Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,18 @@ import tensorflow as tf
|
|
8 |
from tensorflow import keras
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
from PIL import Image
|
14 |
import gdown
|
@@ -16,6 +27,9 @@ import zipfile
|
|
16 |
|
17 |
import pathlib
|
18 |
|
|
|
|
|
|
|
19 |
# Define the Google Drive shareable link
|
20 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
21 |
|
@@ -55,113 +69,326 @@ for root, dirs, files in os.walk(extracted_path):
|
|
55 |
for f in files:
|
56 |
print(f"{subindent}{f}")
|
57 |
|
58 |
-
import pathlib
|
59 |
# Path to the dataset directory
|
60 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
61 |
data_dir = pathlib.Path(data_dir)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
data_dir,
|
87 |
-
validation_split=0.2,
|
88 |
-
subset="validation",
|
89 |
-
seed=123,
|
90 |
-
image_size=(img_height, img_width),
|
91 |
-
batch_size=batch_size)
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
|
|
|
|
|
97 |
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
data_augmentation = keras.Sequential(
|
110 |
-
[
|
111 |
-
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
112 |
-
layers.RandomRotation(0.1),
|
113 |
-
layers.RandomZoom(0.1),
|
114 |
-
]
|
115 |
)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
-
for images, _ in train_ds.take(1):
|
120 |
-
for i in range(9):
|
121 |
-
augmented_images = data_augmentation(images)
|
122 |
-
ax = plt.subplot(3, 3, i + 1)
|
123 |
-
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
124 |
-
plt.axis("off")
|
125 |
-
|
126 |
-
|
127 |
-
num_classes = len(class_names)
|
128 |
-
model = Sequential([
|
129 |
-
data_augmentation,
|
130 |
-
layers.Rescaling(1./255),
|
131 |
-
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
132 |
-
layers.MaxPooling2D(),
|
133 |
-
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
134 |
-
layers.MaxPooling2D(),
|
135 |
-
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
136 |
-
layers.MaxPooling2D(),
|
137 |
-
layers.Dropout(0.2),
|
138 |
-
layers.Flatten(),
|
139 |
-
layers.Dense(128, activation='relu'),
|
140 |
-
layers.Dense(num_classes, activation='softmax', name="outputs") # Use softmax here
|
141 |
-
])
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
metrics=['accuracy'])
|
146 |
|
147 |
-
|
|
|
148 |
|
|
|
|
|
149 |
|
150 |
-
epochs =
|
151 |
-
|
152 |
-
|
153 |
-
validation_data=val_ds,
|
154 |
-
epochs=epochs
|
155 |
-
)
|
156 |
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
|
|
162 |
def predict_image(img):
|
163 |
img = np.array(img)
|
164 |
-
img_resized = tf.image.resize(img, (
|
165 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
166 |
prediction = model.predict(img_4d)[0]
|
167 |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
|
|
8 |
from tensorflow import keras
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
11 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
12 |
+
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
|
13 |
+
from tensorflow.keras.optimizers import Adam
|
14 |
+
from tensorflow.keras.layers import Dense, Dropout, Flatten, BatchNormalization
|
15 |
+
from tensorflow.keras.models import Model
|
16 |
|
17 |
+
from sklearn.model_selection import train_test_split
|
18 |
+
from sklearn.metrics import classification_report
|
19 |
+
|
20 |
+
import pandas as pd
|
21 |
+
import random
|
22 |
+
import cv2
|
23 |
|
24 |
from PIL import Image
|
25 |
import gdown
|
|
|
27 |
|
28 |
import pathlib
|
29 |
|
30 |
+
# Ensure that these imports are at the beginning of your script to avoid any NameError issues.
|
31 |
+
|
32 |
+
|
33 |
# Define the Google Drive shareable link
|
34 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
35 |
|
|
|
69 |
for f in files:
|
70 |
print(f"{subindent}{f}")
|
71 |
|
|
|
72 |
# Path to the dataset directory
|
73 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
74 |
data_dir = pathlib.Path(data_dir)
|
75 |
|
76 |
+
# Read images and labels into a DataFrame
|
77 |
+
image_paths = list(data_dir.glob('*/*.jpg'))
|
78 |
+
image_labels = [str(path.parent.name) for path in image_paths]
|
79 |
+
image_df = pd.DataFrame({'Filepath': image_paths, 'Label': image_labels})
|
80 |
+
|
81 |
+
# Display distribution of labels
|
82 |
+
label_counts = image_df['Label'].value_counts()
|
83 |
+
plt.figure(figsize=(10, 6))
|
84 |
+
sns.barplot(x=label_counts.index, y=label_counts.values, alpha=0.8, palette='rocket')
|
85 |
+
plt.title('Distribution of Labels in Image Dataset', fontsize=16)
|
86 |
+
plt.xlabel('Label', fontsize=14)
|
87 |
+
plt.ylabel('Count', fontsize=14)
|
88 |
+
plt.xticks(rotation=45)
|
89 |
+
plt.show()
|
90 |
+
|
91 |
+
# Display 16 pictures of the dataset with their labels
|
92 |
+
random_index = np.random.randint(0, len(image_df), 16)
|
93 |
+
fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),
|
94 |
+
subplot_kw={'xticks': [], 'yticks': []})
|
95 |
+
for i, ax in enumerate(axes.flat):
|
96 |
+
ax.imshow(plt.imread(image_df.Filepath[random_index[i]]))
|
97 |
+
ax.set_title(image_df.Label[random_index[i]])
|
98 |
+
plt.tight_layout()
|
99 |
+
plt.show()
|
100 |
+
|
101 |
+
# Function to return a random image path from a given directory
|
102 |
+
def random_sample(directory):
|
103 |
+
images = [os.path.join(directory, img) for img in os.listdir(directory) if img.endswith(('.jpg', '.jpeg', '.png'))]
|
104 |
+
return random.choice(images)
|
105 |
+
|
106 |
+
# Function to compute the Error Level Analysis (ELA) of an image
|
107 |
+
def compute_ela_cv(path, quality):
|
108 |
+
temp_filename = 'temp.jpg'
|
109 |
+
orig = cv2.imread(path)
|
110 |
+
cv2.imwrite(temp_filename, orig, [int(cv2.IMWRITE_JPEG_QUALITY), quality])
|
111 |
+
compressed = cv2.imread(temp_filename)
|
112 |
+
ela_image = cv2.absdiff(orig, compressed)
|
113 |
+
ela_image = np.clip(ela_image * 10, 0, 255).astype(np.uint8)
|
114 |
+
return ela_image
|
115 |
+
|
116 |
+
# View random sample from the dataset
|
117 |
+
p = random_sample('extracted_files/Pest_Dataset/beetle')
|
118 |
+
orig = cv2.imread(p)
|
119 |
+
orig = cv2.cvtColor(orig, cv2.COLOR_BGR2RGB) / 255.0
|
120 |
+
init_val = 100
|
121 |
+
columns = 3
|
122 |
+
rows = 3
|
123 |
+
|
124 |
+
fig = plt.figure(figsize=(15, 10))
|
125 |
+
for i in range(1, columns*rows + 1):
|
126 |
+
quality = init_val - (i-1) * 8
|
127 |
+
img = compute_ela_cv(path=p, quality=quality)
|
128 |
+
if i == 1:
|
129 |
+
img = orig.copy()
|
130 |
+
ax = fig.add_subplot(rows, columns, i)
|
131 |
+
ax.title.set_text(f'q: {quality}')
|
132 |
+
plt.imshow(img)
|
133 |
+
plt.show()
|
134 |
+
|
135 |
+
# Read images and labels into a DataFrame
|
136 |
+
image_paths = list(data_dir.glob('*/*.jpg'))
|
137 |
+
image_labels = [str(path.parent.name) for path in image_paths]
|
138 |
+
image_df = pd.DataFrame({'Filepath': [str(path) for path in image_paths], 'Label': image_labels})
|
139 |
+
|
140 |
+
# Separate into train and test data
|
141 |
+
train_df, test_df = train_test_split(image_df, test_size=0.2, shuffle=True, random_state=42)
|
142 |
+
|
143 |
+
train_generator = ImageDataGenerator(
|
144 |
+
preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input,
|
145 |
+
validation_split=0.2
|
146 |
+
)
|
147 |
|
148 |
+
test_generator = ImageDataGenerator(
|
149 |
+
preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input
|
150 |
+
)
|
151 |
|
152 |
+
# Split the data into three categories
|
153 |
+
train_images = train_generator.flow_from_dataframe(
|
154 |
+
dataframe=train_df,
|
155 |
+
x_col='Filepath',
|
156 |
+
y_col='Label',
|
157 |
+
target_size=(224, 224),
|
158 |
+
color_mode='rgb',
|
159 |
+
class_mode='categorical',
|
160 |
+
batch_size=32,
|
161 |
+
shuffle=True,
|
162 |
+
seed=42,
|
163 |
+
subset='training'
|
164 |
+
)
|
165 |
|
166 |
+
val_images = train_generator.flow_from_dataframe(
|
167 |
+
dataframe=train_df,
|
168 |
+
x_col='Filepath',
|
169 |
+
y_col='Label',
|
170 |
+
target_size=(224, 224),
|
171 |
+
color_mode='rgb',
|
172 |
+
class_mode='categorical',
|
173 |
+
batch_size=32,
|
174 |
+
shuffle=True,
|
175 |
+
seed=42,
|
176 |
+
subset='validation'
|
177 |
+
)
|
178 |
+
|
179 |
+
test_images = test_generator.flow_from_dataframe(
|
180 |
+
dataframe=test_df,
|
181 |
+
x_col='Filepath',
|
182 |
+
y_col='Label',
|
183 |
+
target_size=(224, 224),
|
184 |
+
color_mode='rgb',
|
185 |
+
class_mode='categorical',
|
186 |
+
batch_size=32,
|
187 |
+
shuffle=False
|
188 |
+
)
|
189 |
|
190 |
|
191 |
+
# Data Augmentation Step
|
192 |
+
augment = tf.keras.Sequential([
|
193 |
+
layers.experimental.preprocessing.Resizing(224, 224),
|
194 |
+
layers.experimental.preprocessing.Rescaling(1./255),
|
195 |
+
layers.experimental.preprocessing.RandomFlip("horizontal"),
|
196 |
+
layers.experimental.preprocessing.RandomRotation(0.1),
|
197 |
+
layers.experimental.preprocessing.RandomZoom(0.1),
|
198 |
+
layers.experimental.preprocessing.RandomContrast(0.1),
|
199 |
+
])
|
200 |
|
201 |
+
# Load the pretrained model
|
202 |
+
pretrained_model = tf.keras.applications.efficientnet_v2.EfficientNetV2L(
|
203 |
+
input_shape=(224, 224, 3),
|
204 |
+
include_top=False,
|
205 |
+
weights='imagenet',
|
206 |
+
pooling='max'
|
207 |
+
)
|
208 |
|
209 |
+
pretrained_model.trainable = False
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
# Create checkpoint callback
|
212 |
+
checkpoint_path = "pests_cats_classification_model_checkpoint"
|
213 |
+
checkpoint_callback = ModelCheckpoint(checkpoint_path,
|
214 |
+
save_weights_only=True,
|
215 |
+
monitor="val_accuracy",
|
216 |
+
save_best_only=True)
|
217 |
|
218 |
+
# Setup EarlyStopping callback to stop training if model's val_loss doesn't improve for 5 epochs
|
219 |
+
early_stopping = EarlyStopping(monitor="val_loss", patience=5, restore_best_weights=True)
|
220 |
|
221 |
+
inputs = pretrained_model.input
|
222 |
+
x = augment(inputs)
|
223 |
|
224 |
+
# Add new classification layers
|
225 |
+
x = Flatten()(pretrained_model.output)
|
226 |
+
x = Dense(256, activation='relu')(x)
|
227 |
+
x = Dropout(0.5)(x)
|
228 |
+
x = BatchNormalization()(x)
|
229 |
+
x = Dense(128, activation='relu')(x)
|
230 |
+
x = Dropout(0.5)(x)
|
231 |
|
232 |
+
outputs = Dense(12, activation='softmax')(x)
|
233 |
+
|
234 |
+
model = Model(inputs=inputs, outputs=outputs)
|
235 |
+
|
236 |
+
model.compile(
|
237 |
+
optimizer=Adam(0.00001),
|
238 |
+
loss='categorical_crossentropy',
|
239 |
+
metrics=['accuracy']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
)
|
241 |
|
242 |
+
# Train the model
|
243 |
+
history = model.fit(
|
244 |
+
train_images,
|
245 |
+
steps_per_epoch=len(train_images),
|
246 |
+
validation_data=val_images,
|
247 |
+
validation_steps=len(val_images),
|
248 |
+
epochs=20, # Change epochs to 20
|
249 |
+
callbacks=[
|
250 |
+
early_stopping,
|
251 |
+
checkpoint_callback,
|
252 |
+
]
|
253 |
+
)
|
254 |
|
255 |
+
results = model.evaluate(test_images, verbose=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
+
print(" Test Loss: {:.5f}".format(results[0]))
|
258 |
+
print("Test Accuracy: {:.2f}%".format(results[1] * 100))
|
|
|
259 |
|
260 |
+
accuracy = history.history['accuracy']
|
261 |
+
val_accuracy = history.history['val_accuracy']
|
262 |
|
263 |
+
loss = history.history['loss']
|
264 |
+
val_loss = history.history['val_loss']
|
265 |
|
266 |
+
epochs = range(len(accuracy))
|
267 |
+
plt.plot(epochs, accuracy, 'b', label='Training accuracy')
|
268 |
+
plt.plot(epochs, val_accuracy, 'r', label='Validation accuracy')
|
|
|
|
|
|
|
269 |
|
270 |
+
plt.title('Training and validation accuracy')
|
271 |
+
plt.legend()
|
272 |
+
plt.figure()
|
273 |
+
plt.plot(epochs, loss, 'b', label='Training loss')
|
274 |
+
plt.plot(epochs, val_loss, 'r', label='Validation loss')
|
275 |
|
276 |
+
plt.title('Training and validation loss')
|
277 |
+
plt.legend()
|
278 |
+
plt.show()
|
279 |
+
|
280 |
+
# Predict the label of the test_images
|
281 |
+
pred = model.predict(test_images)
|
282 |
+
pred = np.argmax(pred, axis=1)
|
283 |
+
|
284 |
+
# Map the label
|
285 |
+
labels = (train_images.class_indices)
|
286 |
+
labels = dict((v, k) for k, v in labels.items())
|
287 |
+
pred = [labels[k] for k in pred]
|
288 |
+
|
289 |
+
# Display the result
|
290 |
+
print(f'The first 5 predictions: {pred[:5]}')
|
291 |
+
|
292 |
+
# Display 25 random pictures from the dataset with their labels
|
293 |
+
random_index = np.random.randint(0, len(test_df) - 1, 15)
|
294 |
+
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(25, 15),
|
295 |
+
subplot_kw={'xticks': [], 'yticks': []})
|
296 |
+
|
297 |
+
for i, ax in enumerate(axes.flat):
|
298 |
+
ax.imshow(plt.imread(test_df.Filepath.iloc[random_index[i]]))
|
299 |
+
if test_df.Label.iloc[random_index[i]] == pred[random_index[i]]:
|
300 |
+
color = "green"
|
301 |
+
else:
|
302 |
+
color = "red"
|
303 |
+
ax.set_title(f"True: {test_df.Label.iloc[random_index[i]]}\nPredicted: {pred[random_index[i]]}", color=color)
|
304 |
+
plt.show()
|
305 |
+
plt.tight_layout()
|
306 |
+
|
307 |
+
y_test = list(test_df.Label)
|
308 |
+
print(classification_report(y_test, pred))
|
309 |
+
|
310 |
+
report = classification_report(y_test, pred, output_dict=True)
|
311 |
+
df = pd.DataFrame(report).transpose()
|
312 |
+
df
|
313 |
+
|
314 |
+
# Define function to get image array
|
315 |
+
def get_img_array(img_path, size):
|
316 |
+
img = tf.keras.preprocessing.image.load_img(img_path, target_size=size)
|
317 |
+
array = tf.keras.preprocessing.image.img_to_array(img)
|
318 |
+
array = np.expand_dims(array, axis=0)
|
319 |
+
return array
|
320 |
+
|
321 |
+
# Define function to make Grad-CAM heatmap
|
322 |
+
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, classifier_layer_names=None):
|
323 |
+
grad_model = tf.keras.models.Model(
|
324 |
+
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
|
325 |
+
)
|
326 |
+
|
327 |
+
with tf.GradientTape() as tape:
|
328 |
+
conv_outputs, predictions = grad_model(img_array)
|
329 |
+
loss = predictions[:, np.argmax(predictions[0])]
|
330 |
+
|
331 |
+
output = conv_outputs[0]
|
332 |
+
grads = tape.gradient(loss, conv_outputs)[0]
|
333 |
+
|
334 |
+
gate_f = tf.cast(output > 0, "float32")
|
335 |
+
gate_r = tf.cast(grads > 0, "float32")
|
336 |
+
guided_grads = grads * gate_f * gate_r
|
337 |
+
|
338 |
+
weights = tf.reduce_mean(guided_grads, axis=(0, 1))
|
339 |
+
|
340 |
+
cam = np.zeros(output.shape[0:2], dtype=np.float32)
|
341 |
+
|
342 |
+
for i, w in enumerate(weights):
|
343 |
+
cam += w * output[:, :, i]
|
344 |
+
|
345 |
+
cam = cv2.resize(cam.numpy(), (img_array.shape[2], img_array.shape[1]))
|
346 |
+
cam = np.maximum(cam, 0)
|
347 |
+
heatmap = cam / cam.max()
|
348 |
+
|
349 |
+
return heatmap
|
350 |
+
|
351 |
+
# Define function to save and display Grad-CAM
|
352 |
+
def save_and_display_gradcam(img_path, heatmap, cam_path="cam.jpg", alpha=0.4):
|
353 |
+
img = tf.keras.preprocessing.image.load_img(img_path)
|
354 |
+
img = tf.keras.preprocessing.image.img_to_array(img)
|
355 |
+
|
356 |
+
heatmap = np.uint8(255 * heatmap)
|
357 |
+
|
358 |
+
jet = cm.get_cmap("jet")
|
359 |
+
|
360 |
+
jet_colors = jet(np.arange(256))[:, :3]
|
361 |
+
jet_heatmap = jet_colors[heatmap]
|
362 |
+
|
363 |
+
jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap)
|
364 |
+
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
|
365 |
+
jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap)
|
366 |
+
|
367 |
+
superimposed_img = jet_heatmap * alpha + img
|
368 |
+
superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img)
|
369 |
+
|
370 |
+
superimposed_img.save(cam_path)
|
371 |
+
|
372 |
+
return cam_path
|
373 |
+
|
374 |
+
# Display the part of the pictures used by the neural network to classify the pictures
|
375 |
+
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15, 10),
|
376 |
+
subplot_kw={'xticks': [], 'yticks': []})
|
377 |
+
|
378 |
+
for i, ax in enumerate(axes.flat):
|
379 |
+
img_path = test_df.Filepath.iloc[random_index[i]]
|
380 |
+
img_array = tf.keras.applications.efficientnet_v2.preprocess_input(get_img_array(img_path, size=(224, 224)))
|
381 |
+
heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name="top_conv")
|
382 |
+
cam_path = save_and_display_gradcam(img_path, heatmap)
|
383 |
+
ax.imshow(plt.imread(cam_path))
|
384 |
+
ax.set_title(f"True: {test_df.Label.iloc[random_index[i]]}\nPredicted: {pred[random_index[i]]}")
|
385 |
+
plt.tight_layout()
|
386 |
+
plt.show()
|
387 |
|
388 |
+
# Define Gradio interface
|
389 |
def predict_image(img):
|
390 |
img = np.array(img)
|
391 |
+
img_resized = tf.image.resize(img, (224, 224))
|
392 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
393 |
prediction = model.predict(img_4d)[0]
|
394 |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|