Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,11 +9,15 @@ from tensorflow import keras
|
|
| 9 |
from tensorflow.keras import layers
|
| 10 |
from tensorflow.keras.models import Sequential
|
| 11 |
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
import gdown
|
| 14 |
import zipfile
|
|
|
|
| 15 |
import pathlib
|
| 16 |
|
|
|
|
|
|
|
| 17 |
# Define the Google Drive shareable link
|
| 18 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 19 |
|
|
@@ -53,69 +57,105 @@ for root, dirs, files in os.walk(extracted_path):
|
|
| 53 |
for f in files:
|
| 54 |
print(f"{subindent}{f}")
|
| 55 |
|
|
|
|
| 56 |
# Path to the dataset directory
|
| 57 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
img_height,
|
| 60 |
-
batch_size
|
| 61 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
)
|
| 69 |
|
| 70 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
class_names = train_ds.class_names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
data_augmentation = keras.Sequential(
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
)
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
num_classes = len(class_names)
|
| 93 |
model = Sequential([
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
])
|
| 107 |
|
|
|
|
| 108 |
model.compile(optimizer='adam',
|
| 109 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
| 110 |
metrics=['accuracy'])
|
| 111 |
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
| 113 |
history = model.fit(
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
)
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
import gradio as gr
|
| 120 |
import numpy as np
|
| 121 |
import tensorflow as tf
|
|
@@ -125,16 +165,34 @@ def predict_image(img):
|
|
| 125 |
img_resized = tf.image.resize(img, (180, 180))
|
| 126 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
| 127 |
prediction = model.predict(img_4d)[0]
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
|
| 131 |
image = gr.Image()
|
| 132 |
label = gr.Label(num_top_classes=12)
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
gr.Interface(
|
| 135 |
fn=predict_image,
|
| 136 |
inputs=image,
|
| 137 |
outputs=label,
|
| 138 |
title="Pest Classification",
|
| 139 |
-
description="Upload an image of a pest to classify it into one of the predefined categories."
|
|
|
|
| 140 |
).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from tensorflow.keras import layers
|
| 10 |
from tensorflow.keras.models import Sequential
|
| 11 |
|
| 12 |
+
|
| 13 |
from PIL import Image
|
| 14 |
import gdown
|
| 15 |
import zipfile
|
| 16 |
+
|
| 17 |
import pathlib
|
| 18 |
|
| 19 |
+
|
| 20 |
+
|
| 21 |
# Define the Google Drive shareable link
|
| 22 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 23 |
|
|
|
|
| 57 |
for f in files:
|
| 58 |
print(f"{subindent}{f}")
|
| 59 |
|
| 60 |
+
import pathlib
|
| 61 |
# Path to the dataset directory
|
| 62 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 63 |
+
data_dir = pathlib.Path(data_dir)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
bees = list(data_dir.glob('bees/*'))
|
| 68 |
+
print(bees[0])
|
| 69 |
+
PIL.Image.open(str(bees[0]))
|
| 70 |
|
| 71 |
+
img_height,img_width=180,180
|
| 72 |
+
batch_size=32
|
| 73 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 74 |
+
data_dir,
|
| 75 |
+
validation_split=0.2,
|
| 76 |
+
subset="training",
|
| 77 |
+
seed=123,
|
| 78 |
+
image_size=(img_height, img_width),
|
| 79 |
+
batch_size=batch_size)
|
|
|
|
| 80 |
|
| 81 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 82 |
+
data_dir,
|
| 83 |
+
validation_split=0.2,
|
| 84 |
+
subset="validation",
|
| 85 |
+
seed=123,
|
| 86 |
+
image_size=(img_height, img_width),
|
| 87 |
+
batch_size=batch_size)
|
| 88 |
+
|
| 89 |
|
| 90 |
class_names = train_ds.class_names
|
| 91 |
+
print(class_names)
|
| 92 |
+
|
| 93 |
+
import matplotlib.pyplot as plt
|
| 94 |
+
|
| 95 |
+
plt.figure(figsize=(10, 10))
|
| 96 |
+
for images, labels in train_ds.take(1):
|
| 97 |
+
for i in range(9):
|
| 98 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 99 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
| 100 |
+
plt.title(class_names[labels[i]])
|
| 101 |
+
plt.axis("off")
|
| 102 |
|
| 103 |
data_augmentation = keras.Sequential(
|
| 104 |
+
[
|
| 105 |
+
layers.RandomFlip("horizontal",
|
| 106 |
+
input_shape=(img_height,
|
| 107 |
+
img_width,
|
| 108 |
+
3)),
|
| 109 |
+
layers.RandomRotation(0.1),
|
| 110 |
+
layers.RandomZoom(0.1),
|
| 111 |
+
]
|
| 112 |
)
|
| 113 |
|
| 114 |
+
plt.figure(figsize=(10, 10))
|
| 115 |
+
for images, _ in train_ds.take(1):
|
| 116 |
+
for i in range(9):
|
| 117 |
+
augmented_images = data_augmentation(images)
|
| 118 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 119 |
+
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
| 120 |
+
plt.axis("off")
|
| 121 |
+
|
| 122 |
+
|
| 123 |
num_classes = len(class_names)
|
| 124 |
model = Sequential([
|
| 125 |
+
data_augmentation,
|
| 126 |
+
layers.Rescaling(1./255),
|
| 127 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
| 128 |
+
layers.MaxPooling2D(),
|
| 129 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
| 130 |
+
layers.MaxPooling2D(),
|
| 131 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
| 132 |
+
layers.MaxPooling2D(),
|
| 133 |
+
layers.Dropout(0.2),
|
| 134 |
+
layers.Flatten(),
|
| 135 |
+
layers.Dense(128, activation='relu'),
|
| 136 |
+
layers.Dense(num_classes, name="outputs")
|
| 137 |
])
|
| 138 |
|
| 139 |
+
|
| 140 |
model.compile(optimizer='adam',
|
| 141 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
| 142 |
metrics=['accuracy'])
|
| 143 |
|
| 144 |
+
|
| 145 |
+
model.summary()
|
| 146 |
+
|
| 147 |
+
epochs = 50
|
| 148 |
history = model.fit(
|
| 149 |
+
train_ds,
|
| 150 |
+
validation_data=val_ds,
|
| 151 |
+
epochs=epochs
|
| 152 |
)
|
| 153 |
|
| 154 |
+
results = model.evaluate(val_ds, verbose=0)
|
| 155 |
+
|
| 156 |
+
print("Validation Loss: {:.5f}".format(results[0]))
|
| 157 |
+
print("Validation Accuracy: {:.2f}%".format(results[1] * 100))
|
| 158 |
+
|
| 159 |
import gradio as gr
|
| 160 |
import numpy as np
|
| 161 |
import tensorflow as tf
|
|
|
|
| 165 |
img_resized = tf.image.resize(img, (180, 180))
|
| 166 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
| 167 |
prediction = model.predict(img_4d)[0]
|
| 168 |
+
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
|
| 173 |
image = gr.Image()
|
| 174 |
label = gr.Label(num_top_classes=12)
|
| 175 |
|
| 176 |
+
# Define custom CSS for background image
|
| 177 |
+
custom_css = """
|
| 178 |
+
body {
|
| 179 |
+
background-image: url('\extracted_files\Pest_Dataset\bees\bees (444).jpg');
|
| 180 |
+
background-size: cover;
|
| 181 |
+
background-repeat: no-repeat;
|
| 182 |
+
background-attachment: fixed;
|
| 183 |
+
color: white;
|
| 184 |
+
}
|
| 185 |
+
"""
|
| 186 |
+
|
| 187 |
gr.Interface(
|
| 188 |
fn=predict_image,
|
| 189 |
inputs=image,
|
| 190 |
outputs=label,
|
| 191 |
title="Pest Classification",
|
| 192 |
+
description="Upload an image of a pest to classify it into one of the predefined categories.",
|
| 193 |
+
css=custom_css
|
| 194 |
).launch(debug=True)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|