Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,24 +4,14 @@ import numpy as np
|
|
4 |
import os
|
5 |
import PIL
|
6 |
import tensorflow as tf
|
7 |
-
|
8 |
-
from tensorflow import keras
|
9 |
-
from tensorflow.keras import layers
|
10 |
-
from tensorflow.keras.models import Sequential
|
11 |
-
|
12 |
-
|
13 |
-
from PIL import Image
|
14 |
import gdown
|
15 |
import zipfile
|
16 |
-
|
17 |
import pathlib
|
18 |
-
|
19 |
-
|
20 |
|
21 |
# Define the Google Drive shareable link
|
22 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
23 |
-
|
24 |
-
# Extract the file ID from the URL
|
25 |
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
|
26 |
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
|
27 |
|
@@ -46,137 +36,115 @@ except zipfile.BadZipFile:
|
|
46 |
os.remove(local_zip_file)
|
47 |
|
48 |
# Convert the extracted directory path to a pathlib.Path object
|
49 |
-
data_dir = pathlib.Path(extracted_path)
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
indent = ' ' * 4 * (level)
|
55 |
-
print(f"{indent}{os.path.basename(root)}/")
|
56 |
-
subindent = ' ' * 4 * (level + 1)
|
57 |
-
for f in files:
|
58 |
-
print(f"{subindent}{f}")
|
59 |
|
60 |
-
import pathlib
|
61 |
-
# Path to the dataset directory
|
62 |
-
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
63 |
-
data_dir = pathlib.Path(data_dir)
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
bees = list(data_dir.glob('bees/*'))
|
68 |
-
print(bees[0])
|
69 |
-
PIL.Image.open(str(bees[0]))
|
70 |
-
|
71 |
-
img_height,img_width=180,180
|
72 |
-
batch_size=32
|
73 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
80 |
|
81 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
|
|
90 |
class_names = train_ds.class_names
|
91 |
-
print(class_names)
|
92 |
-
|
93 |
-
import matplotlib.pyplot as plt
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
ax = plt.subplot(3, 3, i + 1)
|
99 |
-
plt.imshow(images[i].numpy().astype("uint8"))
|
100 |
-
plt.title(class_names[labels[i]])
|
101 |
-
plt.axis("off")
|
102 |
-
|
103 |
-
data_augmentation = keras.Sequential(
|
104 |
-
[
|
105 |
-
layers.RandomFlip("horizontal",
|
106 |
-
input_shape=(img_height,
|
107 |
-
img_width,
|
108 |
-
3)),
|
109 |
layers.RandomRotation(0.1),
|
110 |
layers.RandomZoom(0.1),
|
111 |
-
|
112 |
-
)
|
113 |
-
|
114 |
-
plt.figure(figsize=(10, 10))
|
115 |
-
for images, _ in train_ds.take(1):
|
116 |
-
for i in range(9):
|
117 |
-
augmented_images = data_augmentation(images)
|
118 |
-
ax = plt.subplot(3, 3, i + 1)
|
119 |
-
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
120 |
-
plt.axis("off")
|
121 |
-
|
122 |
|
|
|
123 |
num_classes = len(class_names)
|
124 |
model = Sequential([
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
])
|
138 |
|
139 |
-
|
140 |
model.compile(optimizer='adam',
|
141 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
142 |
metrics=['accuracy'])
|
143 |
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
model
|
146 |
-
|
147 |
epochs = 50
|
148 |
history = model.fit(
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
152 |
)
|
153 |
|
|
|
154 |
results = model.evaluate(val_ds, verbose=0)
|
155 |
-
|
156 |
print("Validation Loss: {:.5f}".format(results[0]))
|
157 |
print("Validation Accuracy: {:.2f}%".format(results[1] * 100))
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
def predict_image(img):
|
164 |
img = np.array(img)
|
165 |
-
img_resized = tf.image.resize(img, (
|
166 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
167 |
prediction = model.predict(img_4d)[0]
|
168 |
-
return {class_names[i]: float(prediction[i]) for i in range(
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
|
|
|
173 |
image = gr.Image()
|
174 |
-
label = gr.Label(num_top_classes=
|
175 |
|
176 |
-
# Define custom CSS for background image
|
177 |
custom_css = """
|
178 |
body {
|
179 |
-
background-image: url('
|
180 |
background-size: cover;
|
181 |
background-repeat: no-repeat;
|
182 |
background-attachment: fixed;
|
@@ -192,7 +160,3 @@ gr.Interface(
|
|
192 |
description="Upload an image of a pest to classify it into one of the predefined categories.",
|
193 |
css=custom_css
|
194 |
).launch(debug=True)
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
4 |
import os
|
5 |
import PIL
|
6 |
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import gdown
|
8 |
import zipfile
|
|
|
9 |
import pathlib
|
10 |
+
from tensorflow import keras
|
11 |
+
from tensorflow.keras import layers, callbacks
|
12 |
|
13 |
# Define the Google Drive shareable link
|
14 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
|
|
|
|
15 |
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
|
16 |
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
|
17 |
|
|
|
36 |
os.remove(local_zip_file)
|
37 |
|
38 |
# Convert the extracted directory path to a pathlib.Path object
|
39 |
+
data_dir = pathlib.Path(extracted_path) / 'Pest_Dataset'
|
40 |
|
41 |
+
# Load and preprocess data
|
42 |
+
img_height, img_width = 180, 180
|
43 |
+
batch_size = 32
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
46 |
+
data_dir,
|
47 |
+
validation_split=0.2,
|
48 |
+
subset="training",
|
49 |
+
seed=123,
|
50 |
+
image_size=(img_height, img_width),
|
51 |
+
batch_size=batch_size
|
52 |
+
)
|
53 |
|
54 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
55 |
+
data_dir,
|
56 |
+
validation_split=0.2,
|
57 |
+
subset="validation",
|
58 |
+
seed=123,
|
59 |
+
image_size=(img_height, img_width),
|
60 |
+
batch_size=batch_size
|
61 |
+
)
|
62 |
|
63 |
+
# Class names
|
64 |
class_names = train_ds.class_names
|
|
|
|
|
|
|
65 |
|
66 |
+
# Data augmentation
|
67 |
+
data_augmentation = keras.Sequential([
|
68 |
+
layers.RandomFlip("horizontal"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
layers.RandomRotation(0.1),
|
70 |
layers.RandomZoom(0.1),
|
71 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Model
|
74 |
num_classes = len(class_names)
|
75 |
model = Sequential([
|
76 |
+
data_augmentation,
|
77 |
+
layers.Rescaling(1./255),
|
78 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
79 |
+
layers.MaxPooling2D(),
|
80 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
81 |
+
layers.MaxPooling2D(),
|
82 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
83 |
+
layers.MaxPooling2D(),
|
84 |
+
layers.Dropout(0.2),
|
85 |
+
layers.Flatten(),
|
86 |
+
layers.Dense(128, activation='relu'),
|
87 |
+
layers.Dense(num_classes, name="outputs")
|
88 |
])
|
89 |
|
90 |
+
# Compile the model
|
91 |
model.compile(optimizer='adam',
|
92 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
93 |
metrics=['accuracy'])
|
94 |
|
95 |
+
# Early stopping callback
|
96 |
+
early_stopping = callbacks.EarlyStopping(
|
97 |
+
monitor='val_loss', patience=5, restore_best_weights=True
|
98 |
+
)
|
99 |
|
100 |
+
# Train the model
|
|
|
101 |
epochs = 50
|
102 |
history = model.fit(
|
103 |
+
train_ds,
|
104 |
+
validation_data=val_ds,
|
105 |
+
epochs=epochs,
|
106 |
+
callbacks=[early_stopping]
|
107 |
)
|
108 |
|
109 |
+
# Evaluate the model on validation data
|
110 |
results = model.evaluate(val_ds, verbose=0)
|
|
|
111 |
print("Validation Loss: {:.5f}".format(results[0]))
|
112 |
print("Validation Accuracy: {:.2f}%".format(results[1] * 100))
|
113 |
|
114 |
+
# Plot training history
|
115 |
+
plt.figure(figsize=(12, 6))
|
116 |
+
plt.subplot(1, 2, 1)
|
117 |
+
plt.plot(history.history['loss'], label='Training Loss')
|
118 |
+
plt.plot(history.history['val_loss'], label='Validation Loss')
|
119 |
+
plt.xlabel('Epoch')
|
120 |
+
plt.ylabel('Loss')
|
121 |
+
plt.legend()
|
122 |
+
plt.title('Training and Validation Loss')
|
123 |
+
|
124 |
+
plt.subplot(1, 2, 2)
|
125 |
+
plt.plot(history.history['accuracy'], label='Training Accuracy')
|
126 |
+
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
|
127 |
+
plt.xlabel('Epoch')
|
128 |
+
plt.ylabel('Accuracy')
|
129 |
+
plt.legend()
|
130 |
+
plt.title('Training and Validation Accuracy')
|
131 |
+
plt.show()
|
132 |
+
|
133 |
+
# Prediction function
|
134 |
def predict_image(img):
|
135 |
img = np.array(img)
|
136 |
+
img_resized = tf.image.resize(img, (img_height, img_width))
|
137 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
138 |
prediction = model.predict(img_4d)[0]
|
139 |
+
return {class_names[i]: float(prediction[i]) for i in range(num_classes)}
|
|
|
|
|
|
|
140 |
|
141 |
+
# Interface
|
142 |
image = gr.Image()
|
143 |
+
label = gr.Label(num_top_classes=num_classes)
|
144 |
|
|
|
145 |
custom_css = """
|
146 |
body {
|
147 |
+
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
|
148 |
background-size: cover;
|
149 |
background-repeat: no-repeat;
|
150 |
background-attachment: fixed;
|
|
|
160 |
description="Upload an image of a pest to classify it into one of the predefined categories.",
|
161 |
css=custom_css
|
162 |
).launch(debug=True)
|
|
|
|
|
|
|
|