File size: 8,404 Bytes
b051880
 
d79abfc
f98a043
0707d05
b051880
f6a8624
98c55ad
 
 
f0f9dff
d79abfc
550e871
d79abfc
f6a8624
 
d79abfc
 
f6a8624
d79abfc
 
f6a8624
 
 
d79abfc
 
 
 
 
550e871
d79abfc
 
 
 
 
 
 
f8ceae5
d79abfc
98c55ad
 
 
 
 
 
 
 
 
 
 
 
 
 
d79abfc
8a3e216
d79abfc
8a3e216
 
 
36fbec5
9d79b23
d79abfc
98c55ad
d79abfc
8a3e216
d79abfc
 
 
 
 
 
 
f6a8624
d79abfc
086ae8e
cb79d6c
 
 
 
086ae8e
 
98c55ad
cac62cc
d79abfc
f6a8624
d79abfc
 
f0f9dff
d79abfc
98c55ad
d79abfc
 
98c55ad
d79abfc
 
550e871
98c55ad
 
 
 
 
 
 
 
 
 
 
 
 
 
d79abfc
550e871
d79abfc
 
 
 
 
 
 
f6a8624
d79abfc
98c55ad
 
 
d79abfc
 
98c55ad
d79abfc
 
 
 
 
 
f6a8624
d79abfc
 
 
550e871
 
 
 
 
 
 
 
b06a884
550e871
cb79d6c
d79abfc
98c55ad
d79abfc
f6a8624
 
 
 
 
98c55ad
 
 
 
f6a8624
98c55ad
 
 
 
 
 
 
 
 
 
f6a8624
 
 
 
 
 
 
98c55ad
 
 
f6a8624
98c55ad
f6a8624
 
 
 
 
 
 
b06a884
d79abfc
 
98c55ad
d79abfc
98c55ad
550e871
d79abfc
af04f31
d79abfc
af04f31
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import tempfile
import base64
import cv2
import streamlit as st
import PIL
import requests
import imageio
from ultralytics import YOLO
from huggingface_hub import hf_hub_download

###############################################################################
# Helper: Embed an HTML5 video that autoplays (muted) with controls.
###############################################################################
def show_autoplay_video(video_bytes: bytes, title: str = "Video"):
    if not video_bytes:
        st.warning(f"No {title} video available.")
        return
    video_base64 = base64.b64encode(video_bytes).decode()
    video_html = f"""
    <h4>{title}</h4>
    <video width="100%" controls autoplay muted>
      <source src="data:video/mp4;base64,{video_base64}" type="video/mp4">
      Your browser does not support the video tag.
    </video>
    """
    st.markdown(video_html, unsafe_allow_html=True)

###############################################################################
# Session state initialization (for processed results)
###############################################################################
if "processed_frames" not in st.session_state:
    st.session_state["processed_frames"] = []
if "shortened_video_data" not in st.session_state:
    st.session_state["shortened_video_data"] = None
if "shortened_video_ready" not in st.session_state:
    st.session_state["shortened_video_ready"] = False

###############################################################################
# Download YOLO Model from Hugging Face
###############################################################################
repo_id = "tstone87/ccr-colorado"
model_filename = "best.pt"

try:
    local_model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
    model = YOLO(local_model_path)
except Exception as ex:
    st.error(f"Unable to load model. Check model path: {model_filename}")
    st.error(ex)

###############################################################################
# Configure Streamlit Page Layout
###############################################################################
st.set_page_config(
    page_title="Fire Detection: Original vs. Processed Video",
    page_icon="🔥",
    layout="wide",
    initial_sidebar_state="expanded"
)

###############################################################################
# SIDEBAR: Video input options
###############################################################################
with st.sidebar:
    st.header("Video Input Options")
    example_option = st.selectbox(
        "Select Example Pair (optional)",
        ["None", "T Example", "LA Example"]
    )
    source_file = st.file_uploader(
        "Or upload your own file...",
        type=("mp4", "jpg", "jpeg", "png", "bmp", "webp")
    )
    confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
    video_option = st.selectbox(
        "Select Video Shortening Option",
        ["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"]
    )
    progress_text = st.empty()
    progress_bar = st.progress(0)
    download_placeholder = st.empty()  # Placeholder for download button

###############################################################################
# MAIN TITLE
###############################################################################
st.title("Fire Detection: Original vs. Processed Video")

###############################################################################
# Load Example Video Data
###############################################################################
original_video_data = None
processed_video_data = None  

if example_option != "None":
    # Use example videos from remote URLs.
    example_videos = {
        "T Example": ("T1.mp4", "T2.mpg"),
        "LA Example": ("LA1.mp4", "LA2.mp4")
    }
    orig_filename, proc_filename = example_videos.get(example_option, (None, None))

    if orig_filename and proc_filename:
        try:
            orig_url = f"https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/{orig_filename}"
            proc_url = f"https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/{proc_filename}"
            original_video_data = requests.get(orig_url).content
            processed_video_data = requests.get(proc_url).content
        except Exception as ex:
            st.error("Error loading example videos. Check your URLs.")
else:
    # No example selected. If a file is uploaded, use it.
    if source_file:
        file_type = source_file.type.split('/')[0]
        if file_type == 'image':
            original_image = PIL.Image.open(source_file)
            buf = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
            original_image.save(buf.name, format="PNG")
            with open(buf.name, "rb") as f:
                original_video_data = f.read()
        else:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tfile:
                tfile.write(source_file.read())
                original_video_data = tfile.name

###############################################################################
# Layout: Two Columns for Original and Processed Videos
###############################################################################
col1, col2 = st.columns(2)

with col1:
    st.subheader("Original File")
    if original_video_data:
        show_autoplay_video(original_video_data, title="Original Video")
    else:
        st.info("No original video available.")

with col2:
    st.subheader("Result File")
    viewer_slot = st.empty()
    if example_option != "None":
        if processed_video_data:
            show_autoplay_video(processed_video_data, title="Processed Video")
        else:
            st.info("No processed video available in example.")
    else:
        viewer_slot.info("Processed video will appear here once detection is run.")

###############################################################################
# Process Video if No Example is Selected
###############################################################################
if example_option == "None" and source_file and source_file.type.split('/')[0] != 'image':
    if st.sidebar.button("Let's Detect Wildfire"):
        st.session_state["processed_frames"] = []
        processed_frames = st.session_state["processed_frames"]

        vid_reader = imageio.get_reader(original_video_data)
        fps = vid_reader.get_meta_data()['fps']
        width, height = vid_reader.get_meta_data()['size']

        frame_count = 0
        total_frames = vid_reader.get_length()

        for frame in vid_reader:
            res = model.predict(frame, conf=confidence)
            res_plotted = res[0].plot()[:, :, ::-1]
            processed_frames.append(res_plotted)

            progress_pct = int((frame_count / total_frames) * 100)
            progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
            progress_bar.progress(min(100, progress_pct))
            frame_count += 1

        progress_text.text("Video processing complete!")
        progress_bar.progress(100)

        if processed_frames:
            temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
            fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Use widely supported codec
            out = cv2.VideoWriter(temp_video_file.name, fourcc, fps, (width, height))

            for frame in processed_frames:
                out.write(frame)
            out.release()

            with open(temp_video_file.name, 'rb') as video_file:
                st.session_state["shortened_video_data"] = video_file.read()
                st.session_state["shortened_video_ready"] = True

            st.success("Processed video created successfully!")
            show_autoplay_video(st.session_state["shortened_video_data"], title="Processed Video")

###############################################################################
# Show Download Button if Ready
###############################################################################
if st.session_state["shortened_video_ready"]:
    download_placeholder.download_button(
        label="Download Processed Video",
        data=st.session_state["shortened_video_data"],
        file_name="processed_video.mp4",
        mime="video/mp4"
    )