Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,21 @@
|
|
1 |
-
import
|
2 |
import cv2
|
3 |
-
import
|
4 |
from ultralytics import YOLO
|
5 |
import tempfile
|
6 |
import time
|
7 |
import requests
|
8 |
import numpy as np
|
9 |
-
import streamlink
|
10 |
|
11 |
# Page Config
|
12 |
-
st.set_page_config(page_title="
|
13 |
|
14 |
-
#
|
15 |
st.markdown(
|
16 |
"""
|
17 |
<style>
|
18 |
.stApp {
|
19 |
-
background-color: #
|
20 |
color: #1a1a1a;
|
21 |
}
|
22 |
h1 {
|
@@ -24,7 +23,7 @@ st.markdown(
|
|
24 |
}
|
25 |
.stTabs > div > button {
|
26 |
background-color: #e0e0e0;
|
27 |
-
color: #333333;
|
28 |
font-weight: bold;
|
29 |
}
|
30 |
.stTabs > div > button:hover {
|
@@ -35,22 +34,12 @@ st.markdown(
|
|
35 |
background-color: #ffffff;
|
36 |
color: #333333;
|
37 |
}
|
38 |
-
.stButton > button {
|
39 |
-
background-color: #e0e0e0;
|
40 |
-
color: #1a1a1a;
|
41 |
-
font-weight: bold;
|
42 |
-
}
|
43 |
-
.stButton > button:hover {
|
44 |
-
background-color: #d0d0d0;
|
45 |
-
color: #1a1a1a;
|
46 |
-
}
|
47 |
-
/* Fix container height to prevent scrolling */
|
48 |
.main .block-container {
|
49 |
max-height: 100vh;
|
50 |
overflow-y: auto;
|
51 |
}
|
52 |
.stImage > img {
|
53 |
-
max-height: 50vh;
|
54 |
object-fit: contain;
|
55 |
}
|
56 |
</style>
|
@@ -59,11 +48,12 @@ st.markdown(
|
|
59 |
)
|
60 |
|
61 |
# Load Model
|
62 |
-
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
|
63 |
try:
|
64 |
model = YOLO(model_path)
|
65 |
except Exception as ex:
|
66 |
-
st.error(f"
|
|
|
67 |
st.stop()
|
68 |
|
69 |
# Initialize Session State
|
@@ -71,77 +61,61 @@ if 'monitoring' not in st.session_state:
|
|
71 |
st.session_state.monitoring = False
|
72 |
if 'current_webcam_url' not in st.session_state:
|
73 |
st.session_state.current_webcam_url = None
|
74 |
-
if 'yt_monitoring' not in st.session_state:
|
75 |
-
st.session_state.yt_monitoring = False
|
76 |
|
77 |
# Header
|
78 |
-
st.title("
|
79 |
-
st.markdown("
|
|
|
|
|
|
|
80 |
|
81 |
# Tabs
|
82 |
-
tabs = st.tabs(["Upload", "Webcam"
|
83 |
|
84 |
-
# Tab 1: Upload
|
85 |
with tabs[0]:
|
86 |
-
col1, col2 = st.columns(
|
87 |
with col1:
|
88 |
st.markdown("**Add Your File**")
|
89 |
-
st.write("Upload an image or video
|
90 |
-
|
91 |
confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="upload_conf")
|
|
|
92 |
with col2:
|
93 |
frame_placeholder = st.empty()
|
94 |
status_placeholder = st.empty()
|
95 |
-
if
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
else:
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
results = model.predict(image, conf=confidence)
|
110 |
-
detected_frame = results[0].plot()[:, :, ::-1]
|
111 |
frame_placeholder.image(detected_frame, use_column_width=True)
|
112 |
-
status_placeholder.write(f"Objects detected: {len(
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
# Process video
|
121 |
-
cap = cv2.VideoCapture(tfile.name)
|
122 |
-
if not cap.isOpened():
|
123 |
-
status_placeholder.error("Failed to open video file. Check format or codec.")
|
124 |
-
else:
|
125 |
-
frame_count = 0
|
126 |
-
while cap.isOpened():
|
127 |
-
ret, frame = cap.read()
|
128 |
-
if not ret:
|
129 |
-
status_placeholder.write(f"Finished processing video. Processed {frame_count} frames.")
|
130 |
-
break
|
131 |
-
results = model.predict(frame, conf=confidence)
|
132 |
-
detected_frame = results[0].plot()[:, :, ::-1]
|
133 |
-
frame_placeholder.image(detected_frame, use_column_width=True)
|
134 |
-
status_placeholder.write(f"Frame {frame_count}: Objects detected: {len(results[0].boxes)}")
|
135 |
-
frame_count += 1
|
136 |
-
time.sleep(0.05)
|
137 |
-
cap.release()
|
138 |
-
# Clean up
|
139 |
-
import os
|
140 |
-
os.unlink(tfile.name)
|
141 |
-
except Exception as e:
|
142 |
-
status_placeholder.error(f"Error processing file: {str(e)}")
|
143 |
|
144 |
-
# Tab 2: Webcam
|
145 |
with tabs[1]:
|
146 |
col1, col2 = st.columns([1, 1])
|
147 |
with col1:
|
@@ -166,22 +140,24 @@ with tabs[1]:
|
|
166 |
timer_placeholder = st.empty()
|
167 |
|
168 |
if st.session_state.monitoring and st.session_state.current_webcam_url:
|
169 |
-
# Try as video stream first
|
170 |
cap = cv2.VideoCapture(webcam_url)
|
171 |
is_video_stream = cap.isOpened()
|
172 |
|
173 |
if is_video_stream:
|
174 |
status_placeholder.write("Connected to video stream...")
|
175 |
-
while st.session_state.monitoring:
|
176 |
try:
|
177 |
ret, frame = cap.read()
|
178 |
if not ret:
|
179 |
status_placeholder.error("Video stream interrupted.")
|
180 |
break
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
183 |
frame_placeholder.image(detected_frame, use_column_width=True)
|
184 |
-
status_placeholder.write(f"Objects detected: {len(
|
185 |
time.sleep(0.1) # Fast update for video
|
186 |
except Exception as e:
|
187 |
status_placeholder.error(f"Video error: {e}")
|
@@ -189,11 +165,13 @@ with tabs[1]:
|
|
189 |
break
|
190 |
cap.release()
|
191 |
else:
|
192 |
-
# Image-based webcam
|
193 |
status_placeholder.write("Monitoring image-based webcam...")
|
194 |
while st.session_state.monitoring:
|
195 |
try:
|
196 |
start_time = time.time()
|
|
|
|
|
|
|
197 |
response = requests.get(webcam_url, timeout=5)
|
198 |
if response.status_code != 200:
|
199 |
status_placeholder.error(f"Fetch failed: HTTP {response.status_code}")
|
@@ -204,71 +182,22 @@ with tabs[1]:
|
|
204 |
status_placeholder.error("Image decoding failed.")
|
205 |
break
|
206 |
|
207 |
-
|
208 |
-
detected_frame =
|
209 |
frame_placeholder.image(detected_frame, use_column_width=True)
|
210 |
-
status_placeholder.write(f"Objects detected: {len(
|
211 |
|
212 |
-
# Proper refresh timing for images
|
213 |
elapsed = time.time() - start_time
|
214 |
remaining = max(0, refresh_rate - elapsed)
|
215 |
for i in range(int(remaining), -1, -1):
|
216 |
-
if not st.session_state.monitoring:
|
|
|
217 |
break
|
218 |
timer_placeholder.write(f"Next scan: {i}s")
|
219 |
time.sleep(1)
|
220 |
-
|
221 |
except Exception as e:
|
222 |
status_placeholder.error(f"Image fetch error: {e}")
|
223 |
st.session_state.monitoring = False
|
224 |
break
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
# Tab 3: YouTube
|
229 |
-
with tabs[2]:
|
230 |
-
col1, col2 = st.columns([1, 1])
|
231 |
-
with col1:
|
232 |
-
st.markdown("**YouTube Live**")
|
233 |
-
st.write("Enter a live YouTube URL to auto-analyze the stream.")
|
234 |
-
youtube_url = st.text_input("YouTube URL", "https://www.youtube.com/watch?v=<id>", label_visibility="collapsed")
|
235 |
-
confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="yt_conf")
|
236 |
-
start_yt = st.button("Start Analysis", key="yt_start")
|
237 |
-
stop_yt = st.button("Stop Analysis", key="yt_stop")
|
238 |
-
|
239 |
-
if start_yt:
|
240 |
-
st.session_state.yt_monitoring = True
|
241 |
-
if stop_yt:
|
242 |
-
st.session_state.yt_monitoring = False
|
243 |
-
|
244 |
-
with col2:
|
245 |
-
frame_placeholder = st.empty()
|
246 |
-
status_placeholder = st.empty()
|
247 |
-
|
248 |
-
if st.session_state.yt_monitoring and youtube_url and youtube_url != "https://www.youtube.com/watch?v=<id>":
|
249 |
-
try:
|
250 |
-
status_placeholder.write("Initializing stream...")
|
251 |
-
streams = streamlink.streams(youtube_url)
|
252 |
-
if not streams:
|
253 |
-
status_placeholder.error("No streams found. Check if the URL is a live stream.")
|
254 |
-
else:
|
255 |
-
stream_url = streams["best"].url
|
256 |
-
cap = cv2.VideoCapture(stream_url)
|
257 |
-
if not cap.isOpened():
|
258 |
-
status_placeholder.error("Unable to open stream.")
|
259 |
-
else:
|
260 |
-
status_placeholder.write("Analyzing live stream...")
|
261 |
-
while st.session_state.yt_monitoring and cap.isOpened():
|
262 |
-
ret, frame = cap.read()
|
263 |
-
if not ret:
|
264 |
-
status_placeholder.error("Stream interrupted.")
|
265 |
-
break
|
266 |
-
results = model.predict(frame, conf=confidence)
|
267 |
-
detected_frame = results[0].plot()[:, :, ::-1]
|
268 |
-
frame_placeholder.image(detected_frame, use_column_width=True)
|
269 |
-
status_placeholder.write(f"Objects detected: {len(results[0].boxes)}")
|
270 |
-
time.sleep(0.1)
|
271 |
-
cap.release()
|
272 |
-
except Exception as e:
|
273 |
-
status_placeholder.error(f"Error: {e}")
|
274 |
-
st.session_state.yt_monitoring = False
|
|
|
1 |
+
import PIL
|
2 |
import cv2
|
3 |
+
import streamlit as st
|
4 |
from ultralytics import YOLO
|
5 |
import tempfile
|
6 |
import time
|
7 |
import requests
|
8 |
import numpy as np
|
|
|
9 |
|
10 |
# Page Config
|
11 |
+
st.set_page_config(page_title="WildfireWatch", page_icon="🔥", layout="wide")
|
12 |
|
13 |
+
# CSS for layout stability and dark tab text
|
14 |
st.markdown(
|
15 |
"""
|
16 |
<style>
|
17 |
.stApp {
|
18 |
+
background-color: #f5f5f5;
|
19 |
color: #1a1a1a;
|
20 |
}
|
21 |
h1 {
|
|
|
23 |
}
|
24 |
.stTabs > div > button {
|
25 |
background-color: #e0e0e0;
|
26 |
+
color: #333333;
|
27 |
font-weight: bold;
|
28 |
}
|
29 |
.stTabs > div > button:hover {
|
|
|
34 |
background-color: #ffffff;
|
35 |
color: #333333;
|
36 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
.main .block-container {
|
38 |
max-height: 100vh;
|
39 |
overflow-y: auto;
|
40 |
}
|
41 |
.stImage > img {
|
42 |
+
max-height: 50vh;
|
43 |
object-fit: contain;
|
44 |
}
|
45 |
</style>
|
|
|
48 |
)
|
49 |
|
50 |
# Load Model
|
51 |
+
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt' # Your updated model
|
52 |
try:
|
53 |
model = YOLO(model_path)
|
54 |
except Exception as ex:
|
55 |
+
st.error(f"Unable to load model. Check the specified path: {model_path}")
|
56 |
+
st.error(ex)
|
57 |
st.stop()
|
58 |
|
59 |
# Initialize Session State
|
|
|
61 |
st.session_state.monitoring = False
|
62 |
if 'current_webcam_url' not in st.session_state:
|
63 |
st.session_state.current_webcam_url = None
|
|
|
|
|
64 |
|
65 |
# Header
|
66 |
+
st.title("WildfireWatch: Detecting Wildfire using AI")
|
67 |
+
st.markdown("""
|
68 |
+
Wildfires are a major environmental issue, causing substantial losses to ecosystems, human livelihoods, and potentially leading to loss of life. Early detection of wildfires can prevent these losses. Our application uses state-of-the-art YOLOv8 model for real-time wildfire and smoke detection.
|
69 |
+
""")
|
70 |
+
st.markdown("---")
|
71 |
|
72 |
# Tabs
|
73 |
+
tabs = st.tabs(["Upload", "Webcam"])
|
74 |
|
75 |
+
# Tab 1: Upload (Your original working version)
|
76 |
with tabs[0]:
|
77 |
+
col1, col2 = st.columns(2)
|
78 |
with col1:
|
79 |
st.markdown("**Add Your File**")
|
80 |
+
st.write("Upload an image or video to scan for fire or smoke.")
|
81 |
+
source_file = st.file_uploader("", type=["jpg", "jpeg", "png", "mp4"], label_visibility="collapsed")
|
82 |
confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="upload_conf")
|
83 |
+
|
84 |
with col2:
|
85 |
frame_placeholder = st.empty()
|
86 |
status_placeholder = st.empty()
|
87 |
+
if source_file and st.button("Detect Wildfire", key="upload_detect"):
|
88 |
+
file_type = source_file.type.split('/')[0]
|
89 |
+
if file_type == 'image':
|
90 |
+
uploaded_image = PIL.Image.open(source_file)
|
91 |
+
res = model.predict(uploaded_image, conf=confidence)
|
92 |
+
detected_image = res[0].plot()[:, :, ::-1]
|
93 |
+
frame_placeholder.image(detected_image, use_column_width=True)
|
94 |
+
status_placeholder.write(f"Objects detected: {len(res[0].boxes)}")
|
95 |
+
elif file_type == 'video':
|
96 |
+
tfile = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
97 |
+
tfile.write(source_file.read())
|
98 |
+
tfile.close()
|
99 |
+
vidcap = cv2.VideoCapture(tfile.name)
|
100 |
+
if not vidcap.isOpened():
|
101 |
+
status_placeholder.error("Failed to open video file.")
|
102 |
else:
|
103 |
+
success, frame = vidcap.read()
|
104 |
+
frame_count = 0
|
105 |
+
while success:
|
106 |
+
res = model.predict(frame, conf=confidence)
|
107 |
+
detected_frame = res[0].plot()[:, :, ::-1]
|
|
|
|
|
108 |
frame_placeholder.image(detected_frame, use_column_width=True)
|
109 |
+
status_placeholder.write(f"Frame {frame_count}: Objects detected: {len(res[0].boxes)}")
|
110 |
+
success, frame = vidcap.read()
|
111 |
+
frame_count += 1
|
112 |
+
time.sleep(0.05)
|
113 |
+
vidcap.release()
|
114 |
+
import os
|
115 |
+
os.unlink(tfile.name)
|
116 |
+
status_placeholder.write(f"Video processing complete. Processed {frame_count} frames.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# Tab 2: Webcam (Enhanced with video and image support)
|
119 |
with tabs[1]:
|
120 |
col1, col2 = st.columns([1, 1])
|
121 |
with col1:
|
|
|
140 |
timer_placeholder = st.empty()
|
141 |
|
142 |
if st.session_state.monitoring and st.session_state.current_webcam_url:
|
|
|
143 |
cap = cv2.VideoCapture(webcam_url)
|
144 |
is_video_stream = cap.isOpened()
|
145 |
|
146 |
if is_video_stream:
|
147 |
status_placeholder.write("Connected to video stream...")
|
148 |
+
while st.session_state.monitoring and cap.isOpened():
|
149 |
try:
|
150 |
ret, frame = cap.read()
|
151 |
if not ret:
|
152 |
status_placeholder.error("Video stream interrupted.")
|
153 |
break
|
154 |
+
if webcam_url != st.session_state.current_webcam_url:
|
155 |
+
status_placeholder.write("URL changed. Stopping video monitoring.")
|
156 |
+
break
|
157 |
+
res = model.predict(frame, conf=confidence)
|
158 |
+
detected_frame = res[0].plot()[:, :, ::-1]
|
159 |
frame_placeholder.image(detected_frame, use_column_width=True)
|
160 |
+
status_placeholder.write(f"Objects detected: {len(res[0].boxes)}")
|
161 |
time.sleep(0.1) # Fast update for video
|
162 |
except Exception as e:
|
163 |
status_placeholder.error(f"Video error: {e}")
|
|
|
165 |
break
|
166 |
cap.release()
|
167 |
else:
|
|
|
168 |
status_placeholder.write("Monitoring image-based webcam...")
|
169 |
while st.session_state.monitoring:
|
170 |
try:
|
171 |
start_time = time.time()
|
172 |
+
if webcam_url != st.session_state.current_webcam_url:
|
173 |
+
status_placeholder.write("URL changed. Stopping image monitoring.")
|
174 |
+
break
|
175 |
response = requests.get(webcam_url, timeout=5)
|
176 |
if response.status_code != 200:
|
177 |
status_placeholder.error(f"Fetch failed: HTTP {response.status_code}")
|
|
|
182 |
status_placeholder.error("Image decoding failed.")
|
183 |
break
|
184 |
|
185 |
+
res = model.predict(frame, conf=confidence)
|
186 |
+
detected_frame = res[0].plot()[:, :, ::-1]
|
187 |
frame_placeholder.image(detected_frame, use_column_width=True)
|
188 |
+
status_placeholder.write(f"Objects detected: {len(res[0].boxes)}")
|
189 |
|
|
|
190 |
elapsed = time.time() - start_time
|
191 |
remaining = max(0, refresh_rate - elapsed)
|
192 |
for i in range(int(remaining), -1, -1):
|
193 |
+
if not st.session_state.monitoring or webcam_url != st.session_state.current_webcam_url:
|
194 |
+
status_placeholder.write("Monitoring interrupted or URL changed.")
|
195 |
break
|
196 |
timer_placeholder.write(f"Next scan: {i}s")
|
197 |
time.sleep(1)
|
|
|
198 |
except Exception as e:
|
199 |
status_placeholder.error(f"Image fetch error: {e}")
|
200 |
st.session_state.monitoring = False
|
201 |
break
|
202 |
+
if not st.session_state.monitoring:
|
203 |
+
timer_placeholder.write("Monitoring stopped.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|