Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -86,7 +86,7 @@ with tabs[0]:
|
|
86 |
col1, col2 = st.columns([1, 1])
|
87 |
with col1:
|
88 |
st.markdown("**Add Your File**")
|
89 |
-
st.write("Upload an image or video to scan for fire or smoke.")
|
90 |
uploaded_file = st.file_uploader("", type=["jpg", "jpeg", "png", "mp4"], label_visibility="collapsed")
|
91 |
confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="upload_conf")
|
92 |
with col2:
|
@@ -94,44 +94,50 @@ with tabs[0]:
|
|
94 |
status_placeholder = st.empty()
|
95 |
if uploaded_file:
|
96 |
try:
|
97 |
-
|
98 |
-
|
|
|
99 |
|
100 |
-
if
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
status_placeholder.write(f"Objects detected: {len(results[0].boxes)}")
|
106 |
-
|
107 |
-
elif file_type == 'video':
|
108 |
-
# Save uploaded file to temporary location
|
109 |
-
tfile = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
110 |
-
tfile.write(uploaded_file.read())
|
111 |
-
tfile.close()
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
while cap.isOpened():
|
120 |
-
ret, frame = cap.read()
|
121 |
-
if not ret:
|
122 |
-
status_placeholder.write(f"Finished processing video. Processed {frame_count} frames.")
|
123 |
-
break
|
124 |
-
results = model.predict(frame, conf=confidence)
|
125 |
-
detected_frame = results[0].plot()[:, :, ::-1]
|
126 |
-
frame_placeholder.image(detected_frame, use_column_width=True)
|
127 |
-
status_placeholder.write(f"Frame {frame_count}: Objects detected: {len(results[0].boxes)}")
|
128 |
-
frame_count += 1
|
129 |
-
time.sleep(0.05) # Control playback speed
|
130 |
-
cap.release()
|
131 |
-
# Clean up temporary file
|
132 |
-
import os
|
133 |
-
os.unlink(tfile.name)
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
except Exception as e:
|
136 |
status_placeholder.error(f"Error processing file: {str(e)}")
|
137 |
|
|
|
86 |
col1, col2 = st.columns([1, 1])
|
87 |
with col1:
|
88 |
st.markdown("**Add Your File**")
|
89 |
+
st.write("Upload an image or video (max 200MB) to scan for fire or smoke.")
|
90 |
uploaded_file = st.file_uploader("", type=["jpg", "jpeg", "png", "mp4"], label_visibility="collapsed")
|
91 |
confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="upload_conf")
|
92 |
with col2:
|
|
|
94 |
status_placeholder = st.empty()
|
95 |
if uploaded_file:
|
96 |
try:
|
97 |
+
# Log file details
|
98 |
+
file_size_mb = uploaded_file.size / 1024 / 1024
|
99 |
+
status_placeholder.write(f"File size: {file_size_mb:.2f} MB, Type: {uploaded_file.type}")
|
100 |
|
101 |
+
if file_size_mb > 200:
|
102 |
+
status_placeholder.error("File exceeds 200MB limit. Please use a smaller file.")
|
103 |
+
else:
|
104 |
+
file_type = uploaded_file.type.split('/')[0]
|
105 |
+
status_placeholder.write(f"Processing {file_type} file...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
if file_type == 'image':
|
108 |
+
image = PIL.Image.open(uploaded_file)
|
109 |
+
results = model.predict(image, conf=confidence)
|
110 |
+
detected_frame = results[0].plot()[:, :, ::-1]
|
111 |
+
frame_placeholder.image(detected_frame, use_column_width=True)
|
112 |
+
status_placeholder.write(f"Objects detected: {len(results[0].boxes)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
elif file_type == 'video':
|
115 |
+
# Save to temporary file
|
116 |
+
tfile = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
117 |
+
tfile.write(uploaded_file.read())
|
118 |
+
tfile.close()
|
119 |
+
|
120 |
+
# Process video
|
121 |
+
cap = cv2.VideoCapture(tfile.name)
|
122 |
+
if not cap.isOpened():
|
123 |
+
status_placeholder.error("Failed to open video file. Check format or codec.")
|
124 |
+
else:
|
125 |
+
frame_count = 0
|
126 |
+
while cap.isOpened():
|
127 |
+
ret, frame = cap.read()
|
128 |
+
if not ret:
|
129 |
+
status_placeholder.write(f"Finished processing video. Processed {frame_count} frames.")
|
130 |
+
break
|
131 |
+
results = model.predict(frame, conf=confidence)
|
132 |
+
detected_frame = results[0].plot()[:, :, ::-1]
|
133 |
+
frame_placeholder.image(detected_frame, use_column_width=True)
|
134 |
+
status_placeholder.write(f"Frame {frame_count}: Objects detected: {len(results[0].boxes)}")
|
135 |
+
frame_count += 1
|
136 |
+
time.sleep(0.05)
|
137 |
+
cap.release()
|
138 |
+
# Clean up
|
139 |
+
import os
|
140 |
+
os.unlink(tfile.name)
|
141 |
except Exception as e:
|
142 |
status_placeholder.error(f"Error processing file: {str(e)}")
|
143 |
|