Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ st.markdown(
|
|
16 |
"""
|
17 |
<style>
|
18 |
.stApp {
|
19 |
-
background-color: #
|
20 |
color: #1a1a1a;
|
21 |
}
|
22 |
h1 {
|
@@ -90,30 +90,50 @@ with tabs[0]:
|
|
90 |
uploaded_file = st.file_uploader("", type=["jpg", "jpeg", "png", "mp4"], label_visibility="collapsed")
|
91 |
confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="upload_conf")
|
92 |
with col2:
|
93 |
-
frame_placeholder = st.empty()
|
94 |
status_placeholder = st.empty()
|
95 |
if uploaded_file:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
tfile.write(uploaded_file.read())
|
106 |
-
cap = cv2.VideoCapture(tfile.name)
|
107 |
-
while cap.isOpened():
|
108 |
-
ret, frame = cap.read()
|
109 |
-
if not ret:
|
110 |
-
break
|
111 |
-
results = model.predict(frame, conf=confidence)
|
112 |
-
detected_frame = results[0].plot()[:, :, ::-1]
|
113 |
-
frame_placeholder.image(detected_frame, use_column_width=True)
|
114 |
status_placeholder.write(f"Objects detected: {len(results[0].boxes)}")
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
# Tab 2: Webcam
|
119 |
with tabs[1]:
|
|
|
16 |
"""
|
17 |
<style>
|
18 |
.stApp {
|
19 |
+
background-color: #cdc0b0;
|
20 |
color: #1a1a1a;
|
21 |
}
|
22 |
h1 {
|
|
|
90 |
uploaded_file = st.file_uploader("", type=["jpg", "jpeg", "png", "mp4"], label_visibility="collapsed")
|
91 |
confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="upload_conf")
|
92 |
with col2:
|
93 |
+
frame_placeholder = st.empty()
|
94 |
status_placeholder = st.empty()
|
95 |
if uploaded_file:
|
96 |
+
try:
|
97 |
+
file_type = uploaded_file.type.split('/')[0]
|
98 |
+
status_placeholder.write(f"Processing {file_type} file...")
|
99 |
+
|
100 |
+
if file_type == 'image':
|
101 |
+
image = PIL.Image.open(uploaded_file)
|
102 |
+
results = model.predict(image, conf=confidence)
|
103 |
+
detected_image = results[0].plot()[:, :, ::-1]
|
104 |
+
frame_placeholder.image(detected_image, use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
status_placeholder.write(f"Objects detected: {len(results[0].boxes)}")
|
106 |
+
|
107 |
+
elif file_type == 'video':
|
108 |
+
# Save uploaded file to temporary location
|
109 |
+
tfile = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
110 |
+
tfile.write(uploaded_file.read())
|
111 |
+
tfile.close()
|
112 |
+
|
113 |
+
# Open video with OpenCV
|
114 |
+
cap = cv2.VideoCapture(tfile.name)
|
115 |
+
if not cap.isOpened():
|
116 |
+
status_placeholder.error("Failed to open video file.")
|
117 |
+
else:
|
118 |
+
frame_count = 0
|
119 |
+
while cap.isOpened():
|
120 |
+
ret, frame = cap.read()
|
121 |
+
if not ret:
|
122 |
+
status_placeholder.write(f"Finished processing video. Processed {frame_count} frames.")
|
123 |
+
break
|
124 |
+
results = model.predict(frame, conf=confidence)
|
125 |
+
detected_frame = results[0].plot()[:, :, ::-1]
|
126 |
+
frame_placeholder.image(detected_frame, use_column_width=True)
|
127 |
+
status_placeholder.write(f"Frame {frame_count}: Objects detected: {len(results[0].boxes)}")
|
128 |
+
frame_count += 1
|
129 |
+
time.sleep(0.05) # Control playback speed
|
130 |
+
cap.release()
|
131 |
+
# Clean up temporary file
|
132 |
+
import os
|
133 |
+
os.unlink(tfile.name)
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
status_placeholder.error(f"Error processing file: {str(e)}")
|
137 |
|
138 |
# Tab 2: Webcam
|
139 |
with tabs[1]:
|