tstone87 commited on
Commit
b06a884
·
verified ·
1 Parent(s): 821fb88

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -26
app.py CHANGED
@@ -8,7 +8,7 @@ from ultralytics import YOLO
8
  import requests
9
 
10
  ###############################################################################
11
- # Helper function to embed an HTML5 video that autoplays (muted) with controls.
12
  ###############################################################################
13
  def show_autoplay_video(video_bytes: bytes, title: str = "Video"):
14
  if not video_bytes:
@@ -25,7 +25,7 @@ def show_autoplay_video(video_bytes: bytes, title: str = "Video"):
25
  st.markdown(video_html, unsafe_allow_html=True)
26
 
27
  ###############################################################################
28
- # Session state initialization (for processed results)
29
  ###############################################################################
30
  if "processed_frames" not in st.session_state:
31
  st.session_state["processed_frames"] = []
@@ -35,7 +35,7 @@ if "shortened_video_ready" not in st.session_state:
35
  st.session_state["shortened_video_ready"] = False
36
 
37
  ###############################################################################
38
- # Configure YOLO model path and page layout
39
  ###############################################################################
40
  model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
41
  st.set_page_config(
@@ -46,11 +46,10 @@ st.set_page_config(
46
  )
47
 
48
  ###############################################################################
49
- # SIDEBAR: Video input options, confidence, sampling options, and example selection
50
  ###############################################################################
51
  with st.sidebar:
52
  st.header("Video Input Options")
53
- # Option to select an example pair; "None" means use an uploaded file.
54
  example_option = st.selectbox(
55
  "Select Example Pair (optional)",
56
  ["None", "T Example", "LA Example"]
@@ -66,8 +65,6 @@ with st.sidebar:
66
  )
67
  progress_text = st.empty()
68
  progress_bar = st.progress(0)
69
- # Placeholder for the download button so it persists.
70
- download_placeholder = st.empty()
71
 
72
  ###############################################################################
73
  # MAIN TITLE
@@ -75,7 +72,7 @@ with st.sidebar:
75
  st.title("Fire Detection: Original vs. Processed Video")
76
 
77
  ###############################################################################
78
- # Load YOLO model
79
  ###############################################################################
80
  try:
81
  model = YOLO(model_path)
@@ -90,7 +87,7 @@ original_video_data = None
90
  processed_video_data = None # For example pairs
91
 
92
  if example_option != "None":
93
- # Use example videos from remote URLs.
94
  if example_option == "T Example":
95
  orig_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/T1.mp4"
96
  proc_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/T2.mpg"
@@ -103,16 +100,17 @@ if example_option != "None":
103
  except Exception as ex:
104
  st.error("Error loading example videos. Check your URLs.")
105
  else:
106
- # No example selected. If a file is uploaded, use it.
107
  if source_file:
108
  file_type = source_file.type.split('/')[0]
109
  if file_type == 'image':
 
110
  original_image = PIL.Image.open(source_file)
111
  buf = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
112
  original_image.save(buf.name, format="PNG")
113
  with open(buf.name, "rb") as f:
114
  original_video_data = f.read()
115
  else:
 
116
  tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
117
  tfile.write(source_file.read())
118
  tfile.flush()
@@ -124,7 +122,7 @@ else:
124
  st.info("Please select an example pair or upload a video file.")
125
 
126
  ###############################################################################
127
- # Layout: Two columns for Original and Processed videos
128
  ###############################################################################
129
  col1, col2 = st.columns(2)
130
 
@@ -135,25 +133,27 @@ with col1:
135
  else:
136
  st.info("No original video available.")
137
 
138
- with col2:
139
- st.subheader("Result File")
140
- if example_option != "None":
141
- if processed_video_data:
142
- show_autoplay_video(processed_video_data, title="Processed Video")
143
- else:
144
- st.info("No processed video available in example.")
145
  else:
146
- if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
147
- show_autoplay_video(st.session_state["shortened_video_data"], title="Processed Video")
148
- else:
149
- st.info("Processed video will appear here once detection is run.")
 
 
150
 
151
  ###############################################################################
152
  # DETECTION: Process the uploaded video if no example is selected.
153
  ###############################################################################
154
  if example_option == "None" and source_file and source_file.type.split('/')[0] != 'image':
155
  if st.sidebar.button("Let's Detect Wildfire"):
156
- # Reset previous processed results.
157
  st.session_state["processed_frames"] = []
158
  st.session_state["shortened_video_data"] = None
159
  st.session_state["shortened_video_ready"] = False
@@ -186,18 +186,22 @@ if example_option == "None" and source_file and source_file.type.split('/')[0] !
186
  sample_interval = 1
187
  output_fps = orig_fps
188
 
 
189
  success, image = vidcap.read()
190
  while success:
191
  if frame_count % sample_interval == 0:
192
  res = model.predict(image, conf=confidence)
193
  res_plotted = res[0].plot()[:, :, ::-1]
194
  processed_frames.append(res_plotted)
 
195
  if total_frames > 0:
196
  progress_pct = int((frame_count / total_frames) * 100)
197
  progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
198
  progress_bar.progress(min(100, progress_pct))
199
  else:
200
  progress_text.text(f"Processing frame {frame_count}")
 
 
201
  frame_count += 1
202
  success, image = vidcap.read()
203
 
@@ -207,7 +211,7 @@ if example_option == "None" and source_file and source_file.type.split('/')[0] !
207
  # Create shortened video from processed frames.
208
  if processed_frames:
209
  temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
210
- # Use the 'avc1' codec (H.264) for better compatibility
211
  fourcc = cv2.VideoWriter_fourcc(*'avc1')
212
  out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
213
  for frame in processed_frames:
@@ -220,14 +224,17 @@ if example_option == "None" and source_file and source_file.type.split('/')[0] !
220
  st.session_state["shortened_video_ready"] = True
221
 
222
  st.success("Processed video created successfully!")
 
 
 
223
  else:
224
  st.error("No frames were processed from the video.")
225
 
226
  ###############################################################################
227
- # Always display the download button if a processed video is ready.
228
  ###############################################################################
229
  if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
230
- download_placeholder.download_button(
231
  label="Download Processed Video",
232
  data=st.session_state["shortened_video_data"],
233
  file_name="processed_video.mp4",
 
8
  import requests
9
 
10
  ###############################################################################
11
+ # Helper: Embed an HTML5 video for autoplay (muted) display.
12
  ###############################################################################
13
  def show_autoplay_video(video_bytes: bytes, title: str = "Video"):
14
  if not video_bytes:
 
25
  st.markdown(video_html, unsafe_allow_html=True)
26
 
27
  ###############################################################################
28
+ # Session state initialization for processed results.
29
  ###############################################################################
30
  if "processed_frames" not in st.session_state:
31
  st.session_state["processed_frames"] = []
 
35
  st.session_state["shortened_video_ready"] = False
36
 
37
  ###############################################################################
38
+ # Configure YOLO model path and page layout.
39
  ###############################################################################
40
  model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
41
  st.set_page_config(
 
46
  )
47
 
48
  ###############################################################################
49
+ # SIDEBAR: Video input options, confidence, sampling options, and example selection.
50
  ###############################################################################
51
  with st.sidebar:
52
  st.header("Video Input Options")
 
53
  example_option = st.selectbox(
54
  "Select Example Pair (optional)",
55
  ["None", "T Example", "LA Example"]
 
65
  )
66
  progress_text = st.empty()
67
  progress_bar = st.progress(0)
 
 
68
 
69
  ###############################################################################
70
  # MAIN TITLE
 
72
  st.title("Fire Detection: Original vs. Processed Video")
73
 
74
  ###############################################################################
75
+ # Load YOLO model.
76
  ###############################################################################
77
  try:
78
  model = YOLO(model_path)
 
87
  processed_video_data = None # For example pairs
88
 
89
  if example_option != "None":
90
+ # Load example videos from URLs.
91
  if example_option == "T Example":
92
  orig_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/T1.mp4"
93
  proc_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/T2.mpg"
 
100
  except Exception as ex:
101
  st.error("Error loading example videos. Check your URLs.")
102
  else:
 
103
  if source_file:
104
  file_type = source_file.type.split('/')[0]
105
  if file_type == 'image':
106
+ # For images, show the image preview.
107
  original_image = PIL.Image.open(source_file)
108
  buf = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
109
  original_image.save(buf.name, format="PNG")
110
  with open(buf.name, "rb") as f:
111
  original_video_data = f.read()
112
  else:
113
+ # For video uploads, save to a temporary file.
114
  tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
115
  tfile.write(source_file.read())
116
  tfile.flush()
 
122
  st.info("Please select an example pair or upload a video file.")
123
 
124
  ###############################################################################
125
+ # Layout: Two columns for Original and Processed videos.
126
  ###############################################################################
127
  col1, col2 = st.columns(2)
128
 
 
133
  else:
134
  st.info("No original video available.")
135
 
136
+ # Create a placeholder for the processed video display.
137
+ viewer_slot = col2.empty()
138
+ col2.subheader("Result File")
139
+
140
+ if example_option != "None":
141
+ if processed_video_data:
142
+ show_autoplay_video(processed_video_data, title="Processed Video")
143
  else:
144
+ col2.info("No processed video available in example.")
145
+ else:
146
+ if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
147
+ show_autoplay_video(st.session_state["shortened_video_data"], title="Processed Video")
148
+ else:
149
+ col2.info("Processed video will appear here once detection is run.")
150
 
151
  ###############################################################################
152
  # DETECTION: Process the uploaded video if no example is selected.
153
  ###############################################################################
154
  if example_option == "None" and source_file and source_file.type.split('/')[0] != 'image':
155
  if st.sidebar.button("Let's Detect Wildfire"):
156
+ # Reset previous results.
157
  st.session_state["processed_frames"] = []
158
  st.session_state["shortened_video_data"] = None
159
  st.session_state["shortened_video_ready"] = False
 
186
  sample_interval = 1
187
  output_fps = orig_fps
188
 
189
+ # Process frames.
190
  success, image = vidcap.read()
191
  while success:
192
  if frame_count % sample_interval == 0:
193
  res = model.predict(image, conf=confidence)
194
  res_plotted = res[0].plot()[:, :, ::-1]
195
  processed_frames.append(res_plotted)
196
+ # Update progress.
197
  if total_frames > 0:
198
  progress_pct = int((frame_count / total_frames) * 100)
199
  progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
200
  progress_bar.progress(min(100, progress_pct))
201
  else:
202
  progress_text.text(f"Processing frame {frame_count}")
203
+ # Update the viewer with the most recent processed frame.
204
+ viewer_slot.image(res_plotted, caption=f"Frame {frame_count}", use_column_width=True)
205
  frame_count += 1
206
  success, image = vidcap.read()
207
 
 
211
  # Create shortened video from processed frames.
212
  if processed_frames:
213
  temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
214
+ # Use 'avc1' codec (H.264) for better compatibility.
215
  fourcc = cv2.VideoWriter_fourcc(*'avc1')
216
  out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
217
  for frame in processed_frames:
 
224
  st.session_state["shortened_video_ready"] = True
225
 
226
  st.success("Processed video created successfully!")
227
+ # Update the viewer with the final processed video.
228
+ viewer_slot.empty()
229
+ show_autoplay_video(st.session_state["shortened_video_data"], title="Processed Video")
230
  else:
231
  st.error("No frames were processed from the video.")
232
 
233
  ###############################################################################
234
+ # ALWAYS display the download button if a processed video is ready.
235
  ###############################################################################
236
  if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
237
+ st.download_button(
238
  label="Download Processed Video",
239
  data=st.session_state["shortened_video_data"],
240
  file_name="processed_video.mp4",