Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,26 +5,27 @@ import cv2
|
|
5 |
import streamlit as st
|
6 |
import PIL
|
7 |
from ultralytics import YOLO
|
|
|
8 |
|
9 |
###############################################################################
|
10 |
-
# Helper function
|
11 |
###############################################################################
|
12 |
-
def show_autoplay_video(
|
13 |
-
if not
|
14 |
st.warning(f"No {title} video available.")
|
15 |
return
|
16 |
-
video_base64 = base64.b64encode(
|
17 |
video_html = f"""
|
18 |
<h4>{title}</h4>
|
19 |
-
<video width="100%"
|
20 |
-
|
21 |
-
|
22 |
</video>
|
23 |
"""
|
24 |
st.markdown(video_html, unsafe_allow_html=True)
|
25 |
|
26 |
###############################################################################
|
27 |
-
# Session state initialization
|
28 |
###############################################################################
|
29 |
if "processed_frames" not in st.session_state:
|
30 |
st.session_state["processed_frames"] = []
|
@@ -34,7 +35,7 @@ if "shortened_video_ready" not in st.session_state:
|
|
34 |
st.session_state["shortened_video_ready"] = False
|
35 |
|
36 |
###############################################################################
|
37 |
-
# Configure YOLO model path and
|
38 |
###############################################################################
|
39 |
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
|
40 |
st.set_page_config(
|
@@ -44,18 +45,35 @@ st.set_page_config(
|
|
44 |
initial_sidebar_state="expanded"
|
45 |
)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
###############################################################################
|
48 |
-
# SIDEBAR:
|
49 |
###############################################################################
|
50 |
with st.sidebar:
|
51 |
st.header("Video Input Options")
|
|
|
52 |
example_option = st.selectbox(
|
53 |
"Select Example Pair (optional)",
|
54 |
["None", "T Example", "LA Example"]
|
55 |
)
|
56 |
source_file = st.file_uploader(
|
57 |
"Or upload your own file...",
|
58 |
-
type=("jpg", "jpeg", "png", "bmp", "webp"
|
59 |
)
|
60 |
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
61 |
video_option = st.selectbox(
|
@@ -66,7 +84,7 @@ with st.sidebar:
|
|
66 |
progress_bar = st.progress(0)
|
67 |
|
68 |
###############################################################################
|
69 |
-
# MAIN
|
70 |
###############################################################################
|
71 |
st.title("Fire Detection: Original vs. Processed Video")
|
72 |
|
@@ -80,152 +98,151 @@ except Exception as ex:
|
|
80 |
st.error(ex)
|
81 |
|
82 |
###############################################################################
|
83 |
-
# Determine source: Example or
|
84 |
###############################################################################
|
85 |
original_video_data = None
|
86 |
-
processed_video_data = None # For example pairs
|
87 |
|
88 |
if example_option != "None":
|
89 |
-
#
|
90 |
if example_option == "T Example":
|
91 |
-
#
|
92 |
-
|
93 |
-
|
94 |
-
original_video_data = f.read()
|
95 |
-
with open("T2.mpg", "rb") as f:
|
96 |
-
processed_video_data = f.read()
|
97 |
-
except Exception as ex:
|
98 |
-
st.error("Error loading T Example videos. Ensure T1.mp4 and T2.mpg are in your repo.")
|
99 |
elif example_option == "LA Example":
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
st.error("Error loading LA Example videos. Ensure LA1.mp4 and LA2.mp4 are in your repo.")
|
108 |
else:
|
109 |
-
# No example selected.
|
110 |
if source_file:
|
111 |
file_type = source_file.type.split('/')[0]
|
112 |
if file_type == 'image':
|
113 |
-
# For images,
|
114 |
original_image = PIL.Image.open(source_file)
|
115 |
-
# Convert image to bytes for display if needed
|
116 |
buf = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
117 |
original_image.save(buf.name, format="PNG")
|
118 |
with open(buf.name, "rb") as f:
|
119 |
-
original_video_data = f.read()
|
120 |
else:
|
121 |
-
# For video, save to a
|
122 |
-
tfile = tempfile.NamedTemporaryFile(delete=False)
|
123 |
tfile.write(source_file.read())
|
124 |
tfile.flush()
|
125 |
with open(tfile.name, "rb") as vf:
|
126 |
original_video_data = vf.read()
|
127 |
-
#
|
128 |
vidcap = cv2.VideoCapture(tfile.name)
|
129 |
else:
|
130 |
-
st.info("Please select an example pair or upload a file.")
|
131 |
|
132 |
###############################################################################
|
133 |
-
#
|
134 |
###############################################################################
|
135 |
col1, col2 = st.columns(2)
|
136 |
|
137 |
-
# Left column: Original video
|
138 |
with col1:
|
139 |
st.subheader("Original File")
|
140 |
if original_video_data:
|
141 |
-
show_autoplay_video(original_video_data, title="Original")
|
142 |
else:
|
143 |
st.info("No original video available.")
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
#
|
149 |
-
if
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
154 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
155 |
-
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
156 |
-
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
157 |
-
|
158 |
-
# Determine sampling interval
|
159 |
-
if video_option == "Original FPS":
|
160 |
-
sample_interval = 1
|
161 |
-
output_fps = orig_fps
|
162 |
-
elif video_option == "1 fps":
|
163 |
-
sample_interval = int(orig_fps) if orig_fps > 0 else 1
|
164 |
-
output_fps = 1
|
165 |
-
elif video_option == "1 frame per 5 seconds":
|
166 |
-
sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5
|
167 |
-
output_fps = 1
|
168 |
-
elif video_option == "1 frame per 10 seconds":
|
169 |
-
sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10
|
170 |
-
output_fps = 1
|
171 |
-
elif video_option == "1 frame per 15 seconds":
|
172 |
-
sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15
|
173 |
-
output_fps = 1
|
174 |
else:
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
if frame_count % sample_interval == 0:
|
181 |
-
res = model.predict(image, conf=confidence)
|
182 |
-
res_plotted = res[0].plot()[:, :, ::-1]
|
183 |
-
st.session_state["processed_frames"].append(res_plotted)
|
184 |
-
# Update progress
|
185 |
-
if total_frames > 0:
|
186 |
-
progress_pct = int((frame_count / total_frames) * 100)
|
187 |
-
progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
|
188 |
-
progress_bar.progress(min(100, progress_pct))
|
189 |
-
else:
|
190 |
-
progress_text.text(f"Processing frame {frame_count}")
|
191 |
-
frame_count += 1
|
192 |
-
success, image = vidcap.read()
|
193 |
-
|
194 |
-
progress_text.text("Video processing complete!")
|
195 |
-
progress_bar.progress(100)
|
196 |
-
|
197 |
-
# Create shortened video from processed frames
|
198 |
-
processed_frames = st.session_state["processed_frames"]
|
199 |
-
if processed_frames:
|
200 |
-
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
201 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
202 |
-
out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
|
203 |
-
for frame in processed_frames:
|
204 |
-
out.write(frame)
|
205 |
-
out.release()
|
206 |
-
|
207 |
-
with open(temp_video_file.name, 'rb') as video_file:
|
208 |
-
st.session_state["shortened_video_data"] = video_file.read()
|
209 |
-
st.session_state["shortened_video_ready"] = True
|
210 |
-
|
211 |
-
st.success("Processed video created successfully!")
|
212 |
|
213 |
###############################################################################
|
214 |
-
#
|
215 |
###############################################################################
|
216 |
-
|
217 |
-
st.
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
###############################################################################
|
228 |
-
# Always
|
229 |
###############################################################################
|
230 |
if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
|
231 |
st.download_button(
|
|
|
5 |
import streamlit as st
|
6 |
import PIL
|
7 |
from ultralytics import YOLO
|
8 |
+
import requests
|
9 |
|
10 |
###############################################################################
|
11 |
+
# Helper function to embed an HTML5 video that autoplays (muted) with controls.
|
12 |
###############################################################################
|
13 |
+
def show_autoplay_video(video_bytes: bytes, title: str = "Video"):
|
14 |
+
if not video_bytes:
|
15 |
st.warning(f"No {title} video available.")
|
16 |
return
|
17 |
+
video_base64 = base64.b64encode(video_bytes).decode()
|
18 |
video_html = f"""
|
19 |
<h4>{title}</h4>
|
20 |
+
<video width="100%" controls autoplay muted>
|
21 |
+
<source src="data:video/mp4;base64,{video_base64}" type="video/mp4">
|
22 |
+
Your browser does not support the video tag.
|
23 |
</video>
|
24 |
"""
|
25 |
st.markdown(video_html, unsafe_allow_html=True)
|
26 |
|
27 |
###############################################################################
|
28 |
+
# Session state initialization (for uploaded processing results)
|
29 |
###############################################################################
|
30 |
if "processed_frames" not in st.session_state:
|
31 |
st.session_state["processed_frames"] = []
|
|
|
35 |
st.session_state["shortened_video_ready"] = False
|
36 |
|
37 |
###############################################################################
|
38 |
+
# Configure YOLO model path and page layout
|
39 |
###############################################################################
|
40 |
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
|
41 |
st.set_page_config(
|
|
|
45 |
initial_sidebar_state="expanded"
|
46 |
)
|
47 |
|
48 |
+
st.title("Fire Watch: Detecting fire using AI vision models")
|
49 |
+
col1, col2 = st.columns(2)
|
50 |
+
with col1:
|
51 |
+
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_1.jpeg", use_column_width=True)
|
52 |
+
with col2:
|
53 |
+
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
|
54 |
+
|
55 |
+
st.markdown("""
|
56 |
+
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas.
|
57 |
+
Early detection is critical. Fire Watch uses the model YOLOv8 for real-time fire and smoke detection
|
58 |
+
in images and videos.
|
59 |
+
""")
|
60 |
+
st.markdown("---")
|
61 |
+
st.header("Fire Detection:")
|
62 |
+
|
63 |
+
|
64 |
###############################################################################
|
65 |
+
# SIDEBAR: Video input options, confidence, sampling options, and example selection
|
66 |
###############################################################################
|
67 |
with st.sidebar:
|
68 |
st.header("Video Input Options")
|
69 |
+
# Option to select an example pair; "None" means use an uploaded file.
|
70 |
example_option = st.selectbox(
|
71 |
"Select Example Pair (optional)",
|
72 |
["None", "T Example", "LA Example"]
|
73 |
)
|
74 |
source_file = st.file_uploader(
|
75 |
"Or upload your own file...",
|
76 |
+
type=("mp4", "jpg", "jpeg", "png", "bmp", "webp")
|
77 |
)
|
78 |
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
79 |
video_option = st.selectbox(
|
|
|
84 |
progress_bar = st.progress(0)
|
85 |
|
86 |
###############################################################################
|
87 |
+
# MAIN TITLE
|
88 |
###############################################################################
|
89 |
st.title("Fire Detection: Original vs. Processed Video")
|
90 |
|
|
|
98 |
st.error(ex)
|
99 |
|
100 |
###############################################################################
|
101 |
+
# Determine source video(s): Example pair or uploaded file.
|
102 |
###############################################################################
|
103 |
original_video_data = None
|
104 |
+
processed_video_data = None # For example pairs
|
105 |
|
106 |
if example_option != "None":
|
107 |
+
# Use example videos from remote URLs.
|
108 |
if example_option == "T Example":
|
109 |
+
# For T Example: set your URLs for original and processed videos.
|
110 |
+
orig_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/T1.mp4"
|
111 |
+
proc_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/T2.mpg"
|
|
|
|
|
|
|
|
|
|
|
112 |
elif example_option == "LA Example":
|
113 |
+
orig_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/LA1.mp4"
|
114 |
+
proc_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/LA2.mp4"
|
115 |
+
try:
|
116 |
+
original_video_data = requests.get(orig_url).content
|
117 |
+
processed_video_data = requests.get(proc_url).content
|
118 |
+
except Exception as ex:
|
119 |
+
st.error("Error loading example videos. Check your URLs.")
|
|
|
120 |
else:
|
121 |
+
# No example selected. If a file is uploaded, use it.
|
122 |
if source_file:
|
123 |
file_type = source_file.type.split('/')[0]
|
124 |
if file_type == 'image':
|
125 |
+
# For images, convert to video-like display (or you could run image detection).
|
126 |
original_image = PIL.Image.open(source_file)
|
|
|
127 |
buf = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
128 |
original_image.save(buf.name, format="PNG")
|
129 |
with open(buf.name, "rb") as f:
|
130 |
+
original_video_data = f.read()
|
131 |
else:
|
132 |
+
# For video uploads, save to a temp file.
|
133 |
+
tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
134 |
tfile.write(source_file.read())
|
135 |
tfile.flush()
|
136 |
with open(tfile.name, "rb") as vf:
|
137 |
original_video_data = vf.read()
|
138 |
+
# Open with OpenCV for processing.
|
139 |
vidcap = cv2.VideoCapture(tfile.name)
|
140 |
else:
|
141 |
+
st.info("Please select an example pair or upload a video file.")
|
142 |
|
143 |
###############################################################################
|
144 |
+
# Layout: Two columns for Original and Processed videos
|
145 |
###############################################################################
|
146 |
col1, col2 = st.columns(2)
|
147 |
|
|
|
148 |
with col1:
|
149 |
st.subheader("Original File")
|
150 |
if original_video_data:
|
151 |
+
show_autoplay_video(original_video_data, title="Original Video")
|
152 |
else:
|
153 |
st.info("No original video available.")
|
154 |
|
155 |
+
with col2:
|
156 |
+
st.subheader("Result File")
|
157 |
+
if example_option != "None":
|
158 |
+
# For example pairs, the processed video is already available.
|
159 |
+
if processed_video_data:
|
160 |
+
show_autoplay_video(processed_video_data, title="Processed Video")
|
161 |
+
else:
|
162 |
+
st.info("No processed video available in example.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
else:
|
164 |
+
# For uploaded files, if a processed video is ready, show it.
|
165 |
+
if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
|
166 |
+
show_autoplay_video(st.session_state["shortened_video_data"], title="Processed Video")
|
167 |
+
else:
|
168 |
+
st.info("Processed video will appear here once detection is run.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
###############################################################################
|
171 |
+
# DETECTION: Process the uploaded video if no example is selected.
|
172 |
###############################################################################
|
173 |
+
if example_option == "None" and source_file and source_file.type.split('/')[0] != 'image':
|
174 |
+
if st.sidebar.button("Let's Detect Wildfire"):
|
175 |
+
# Reset any previous processed results.
|
176 |
+
st.session_state["processed_frames"] = []
|
177 |
+
st.session_state["shortened_video_data"] = None
|
178 |
+
st.session_state["shortened_video_ready"] = False
|
179 |
+
|
180 |
+
processed_frames = st.session_state["processed_frames"]
|
181 |
+
|
182 |
+
frame_count = 0
|
183 |
+
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
184 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
185 |
+
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
186 |
+
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
187 |
+
|
188 |
+
# Determine sampling interval based on option.
|
189 |
+
if video_option == "Original FPS":
|
190 |
+
sample_interval = 1
|
191 |
+
output_fps = orig_fps
|
192 |
+
elif video_option == "1 fps":
|
193 |
+
sample_interval = int(orig_fps) if orig_fps > 0 else 1
|
194 |
+
output_fps = 1
|
195 |
+
elif video_option == "1 frame per 5 seconds":
|
196 |
+
sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5
|
197 |
+
output_fps = 1
|
198 |
+
elif video_option == "1 frame per 10 seconds":
|
199 |
+
sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10
|
200 |
+
output_fps = 1
|
201 |
+
elif video_option == "1 frame per 15 seconds":
|
202 |
+
sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15
|
203 |
+
output_fps = 1
|
204 |
+
else:
|
205 |
+
sample_interval = 1
|
206 |
+
output_fps = orig_fps
|
207 |
+
|
208 |
+
success, image = vidcap.read()
|
209 |
+
while success:
|
210 |
+
if frame_count % sample_interval == 0:
|
211 |
+
res = model.predict(image, conf=confidence)
|
212 |
+
res_plotted = res[0].plot()[:, :, ::-1]
|
213 |
+
processed_frames.append(res_plotted)
|
214 |
+
# Update progress
|
215 |
+
if total_frames > 0:
|
216 |
+
progress_pct = int((frame_count / total_frames) * 100)
|
217 |
+
progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
|
218 |
+
progress_bar.progress(min(100, progress_pct))
|
219 |
+
else:
|
220 |
+
progress_text.text(f"Processing frame {frame_count}")
|
221 |
+
frame_count += 1
|
222 |
+
success, image = vidcap.read()
|
223 |
+
|
224 |
+
progress_text.text("Video processing complete!")
|
225 |
+
progress_bar.progress(100)
|
226 |
+
|
227 |
+
# Create shortened video from processed frames.
|
228 |
+
if processed_frames:
|
229 |
+
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
230 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
231 |
+
out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
|
232 |
+
for frame in processed_frames:
|
233 |
+
out.write(frame)
|
234 |
+
out.release()
|
235 |
+
|
236 |
+
with open(temp_video_file.name, 'rb') as video_file:
|
237 |
+
st.session_state["shortened_video_data"] = video_file.read()
|
238 |
+
st.session_state["shortened_video_ready"] = True
|
239 |
+
|
240 |
+
st.success("Processed video created successfully!")
|
241 |
+
else:
|
242 |
+
st.error("No frames were processed from the video.")
|
243 |
|
244 |
###############################################################################
|
245 |
+
# Always show the download button if a processed video is ready.
|
246 |
###############################################################################
|
247 |
if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
|
248 |
st.download_button(
|