Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,62 @@
|
|
1 |
import os
|
2 |
import tempfile
|
|
|
3 |
import cv2
|
4 |
import streamlit as st
|
5 |
import PIL
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
11 |
st.set_page_config(
|
12 |
-
page_title="Fire
|
13 |
page_icon="🔥",
|
14 |
layout="wide",
|
15 |
initial_sidebar_state="expanded"
|
16 |
)
|
17 |
|
18 |
-
|
|
|
|
|
19 |
with st.sidebar:
|
20 |
-
st.header("
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
24 |
video_option = st.selectbox(
|
25 |
"Select Video Shortening Option",
|
@@ -28,189 +65,172 @@ with st.sidebar:
|
|
28 |
progress_text = st.empty()
|
29 |
progress_bar = st.progress(0)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_1.jpeg", use_column_width=True)
|
36 |
-
with col2:
|
37 |
-
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
|
38 |
-
|
39 |
-
st.markdown("""
|
40 |
-
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas.
|
41 |
-
Early detection is critical. WildfireWatch leverages YOLOv8 for real-time fire and smoke detection
|
42 |
-
in images and videos.
|
43 |
-
""")
|
44 |
-
st.markdown("---")
|
45 |
-
st.header("Fire Detection:")
|
46 |
-
|
47 |
-
# --- DISPLAY UPLOADED FILE ---
|
48 |
-
col1, col2 = st.columns(2)
|
49 |
-
if source_file:
|
50 |
-
file_type = source_file.type.split('/')[0]
|
51 |
-
if file_type == 'image':
|
52 |
-
uploaded_image = PIL.Image.open(source_file)
|
53 |
-
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
|
54 |
-
else:
|
55 |
-
# Temporarily store the uploaded video
|
56 |
-
tfile = tempfile.NamedTemporaryFile(delete=False)
|
57 |
-
tfile.write(source_file.read())
|
58 |
-
vidcap = cv2.VideoCapture(tfile.name)
|
59 |
-
else:
|
60 |
-
st.info("Please upload an image or video file to begin.")
|
61 |
|
62 |
-
|
|
|
|
|
63 |
try:
|
64 |
model = YOLO(model_path)
|
65 |
except Exception as ex:
|
66 |
-
st.error(f"Unable to load model. Check
|
67 |
st.error(ex)
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
st.session_state["processed_frames"] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
st.session_state["frame_detections"] = []
|
76 |
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
st.warning("No file uploaded!")
|
87 |
-
elif file_type == 'image':
|
88 |
-
# Reset previous video data
|
89 |
-
st.session_state["shortened_video_ready"] = False
|
90 |
-
st.session_state["shortened_video_data"] = None
|
91 |
-
|
92 |
-
# IMAGE DETECTION
|
93 |
-
res = model.predict(uploaded_image, conf=confidence)
|
94 |
-
boxes = res[0].boxes
|
95 |
-
res_plotted = res[0].plot()[:, :, ::-1]
|
96 |
-
with col2:
|
97 |
-
st.image(res_plotted, caption='Detected Image', use_column_width=True)
|
98 |
-
with st.expander("Detection Results"):
|
99 |
-
for box in boxes:
|
100 |
-
st.write(box.xywh)
|
101 |
-
else:
|
102 |
-
# Reset previous frames and video data
|
103 |
-
st.session_state["processed_frames"] = []
|
104 |
-
st.session_state["frame_detections"] = []
|
105 |
-
st.session_state["shortened_video_ready"] = False
|
106 |
-
st.session_state["shortened_video_data"] = None
|
107 |
-
|
108 |
-
processed_frames = st.session_state["processed_frames"]
|
109 |
-
frame_detections = st.session_state["frame_detections"]
|
110 |
-
|
111 |
-
frame_count = 0
|
112 |
-
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
113 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
114 |
-
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
115 |
-
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
116 |
-
|
117 |
-
# Determine sampling interval
|
118 |
-
if video_option == "Original FPS":
|
119 |
-
sample_interval = 1
|
120 |
-
output_fps = orig_fps
|
121 |
-
elif video_option == "1 fps":
|
122 |
-
sample_interval = int(orig_fps) if orig_fps > 0 else 1
|
123 |
-
output_fps = 1
|
124 |
-
elif video_option == "1 frame per 5 seconds":
|
125 |
-
sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5
|
126 |
-
output_fps = 1
|
127 |
-
elif video_option == "1 frame per 10 seconds":
|
128 |
-
sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10
|
129 |
-
output_fps = 1
|
130 |
-
elif video_option == "1 frame per 15 seconds":
|
131 |
-
sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15
|
132 |
-
output_fps = 1
|
133 |
-
else:
|
134 |
-
sample_interval = 1
|
135 |
-
output_fps = orig_fps
|
136 |
|
137 |
-
success
|
138 |
-
while success:
|
139 |
-
if frame_count % sample_interval == 0:
|
140 |
-
# Run detection
|
141 |
-
res = model.predict(image, conf=confidence)
|
142 |
-
res_plotted = res[0].plot()[:, :, ::-1]
|
143 |
-
|
144 |
-
processed_frames.append(res_plotted)
|
145 |
-
frame_detections.append(res[0].boxes) # optional
|
146 |
-
|
147 |
-
# Update progress
|
148 |
-
if total_frames > 0:
|
149 |
-
progress_pct = int((frame_count / total_frames) * 100)
|
150 |
-
progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
|
151 |
-
progress_bar.progress(min(100, progress_pct))
|
152 |
-
else:
|
153 |
-
progress_text.text(f"Processing frame {frame_count}")
|
154 |
-
|
155 |
-
frame_count += 1
|
156 |
-
success, image = vidcap.read()
|
157 |
-
|
158 |
-
# Processing complete
|
159 |
-
progress_text.text("Video processing complete!")
|
160 |
-
progress_bar.progress(100)
|
161 |
-
|
162 |
-
# Create shortened video
|
163 |
-
if processed_frames:
|
164 |
-
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
165 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
166 |
-
out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
|
167 |
-
for frame in processed_frames:
|
168 |
-
out.write(frame)
|
169 |
-
out.release()
|
170 |
-
|
171 |
-
# Store the video data in session_state
|
172 |
-
with open(temp_video_file.name, 'rb') as video_file:
|
173 |
-
st.session_state["shortened_video_data"] = video_file.read()
|
174 |
-
st.session_state["shortened_video_ready"] = True
|
175 |
-
|
176 |
-
st.success("Shortened video created successfully!")
|
177 |
-
else:
|
178 |
-
st.error("No frames were processed from the video.")
|
179 |
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
|
182 |
st.download_button(
|
183 |
-
label="Download
|
184 |
data=st.session_state["shortened_video_data"],
|
185 |
-
file_name="
|
186 |
mime="video/mp4"
|
187 |
)
|
188 |
-
|
189 |
-
# --- DISPLAY PROCESSED FRAMES IF ANY ---
|
190 |
-
if st.session_state["processed_frames"]:
|
191 |
-
st.markdown("### Browse Detected Frames")
|
192 |
-
num_frames = len(st.session_state["processed_frames"])
|
193 |
-
|
194 |
-
if num_frames == 1:
|
195 |
-
st.image(st.session_state["processed_frames"][0], caption="Frame 0", use_column_width=True)
|
196 |
-
if st.session_state["frame_detections"]:
|
197 |
-
with st.expander("Detection Results for Frame 0"):
|
198 |
-
for box in st.session_state["frame_detections"][0]:
|
199 |
-
st.write(box.xywh)
|
200 |
-
else:
|
201 |
-
frame_idx = st.slider(
|
202 |
-
"Select Frame",
|
203 |
-
min_value=0,
|
204 |
-
max_value=num_frames - 1,
|
205 |
-
value=0,
|
206 |
-
step=1
|
207 |
-
)
|
208 |
-
st.image(st.session_state["processed_frames"][frame_idx],
|
209 |
-
caption=f"Frame {frame_idx}",
|
210 |
-
use_column_width=True)
|
211 |
-
|
212 |
-
# Optionally show bounding box data
|
213 |
-
if st.session_state["frame_detections"]:
|
214 |
-
with st.expander(f"Detection Results for Frame {frame_idx}"):
|
215 |
-
for box in st.session_state["frame_detections"][frame_idx]:
|
216 |
-
st.write(box.xywh)
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
+
import base64
|
4 |
import cv2
|
5 |
import streamlit as st
|
6 |
import PIL
|
7 |
from ultralytics import YOLO
|
8 |
|
9 |
+
###############################################################################
|
10 |
+
# Helper function: Display an HTML5 video with autoplay, controls, and muted
|
11 |
+
###############################################################################
|
12 |
+
def show_autoplay_video(video_data: bytes, title: str = "Video"):
|
13 |
+
if not video_data:
|
14 |
+
st.warning(f"No {title} video available.")
|
15 |
+
return
|
16 |
+
video_base64 = base64.b64encode(video_data).decode()
|
17 |
+
video_html = f"""
|
18 |
+
<h4>{title}</h4>
|
19 |
+
<video width="100%" height="auto" controls autoplay muted>
|
20 |
+
<source src="data:video/mp4;base64,{video_base64}" type="video/mp4">
|
21 |
+
Your browser does not support the video tag.
|
22 |
+
</video>
|
23 |
+
"""
|
24 |
+
st.markdown(video_html, unsafe_allow_html=True)
|
25 |
+
|
26 |
+
###############################################################################
|
27 |
+
# Session state initialization for processed results (for uploaded files)
|
28 |
+
###############################################################################
|
29 |
+
if "processed_frames" not in st.session_state:
|
30 |
+
st.session_state["processed_frames"] = []
|
31 |
+
if "shortened_video_data" not in st.session_state:
|
32 |
+
st.session_state["shortened_video_data"] = None
|
33 |
+
if "shortened_video_ready" not in st.session_state:
|
34 |
+
st.session_state["shortened_video_ready"] = False
|
35 |
|
36 |
+
###############################################################################
|
37 |
+
# Configure YOLO model path and Streamlit page
|
38 |
+
###############################################################################
|
39 |
+
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
|
40 |
st.set_page_config(
|
41 |
+
page_title="Fire Detection: Original vs. Processed Video",
|
42 |
page_icon="🔥",
|
43 |
layout="wide",
|
44 |
initial_sidebar_state="expanded"
|
45 |
)
|
46 |
|
47 |
+
###############################################################################
|
48 |
+
# SIDEBAR: Upload file, set confidence, video option, and select an example pair
|
49 |
+
###############################################################################
|
50 |
with st.sidebar:
|
51 |
+
st.header("Video Input Options")
|
52 |
+
example_option = st.selectbox(
|
53 |
+
"Select Example Pair (optional)",
|
54 |
+
["None", "T Example", "LA Example"]
|
55 |
+
)
|
56 |
+
source_file = st.file_uploader(
|
57 |
+
"Or upload your own file...",
|
58 |
+
type=("jpg", "jpeg", "png", "bmp", "webp", "mp4")
|
59 |
+
)
|
60 |
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
61 |
video_option = st.selectbox(
|
62 |
"Select Video Shortening Option",
|
|
|
65 |
progress_text = st.empty()
|
66 |
progress_bar = st.progress(0)
|
67 |
|
68 |
+
###############################################################################
|
69 |
+
# MAIN PAGE TITLE
|
70 |
+
###############################################################################
|
71 |
+
st.title("Fire Detection: Original vs. Processed Video")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
###############################################################################
|
74 |
+
# Load YOLO model
|
75 |
+
###############################################################################
|
76 |
try:
|
77 |
model = YOLO(model_path)
|
78 |
except Exception as ex:
|
79 |
+
st.error(f"Unable to load model. Check model path: {model_path}")
|
80 |
st.error(ex)
|
81 |
|
82 |
+
###############################################################################
|
83 |
+
# Determine source: Example or Uploaded File
|
84 |
+
###############################################################################
|
85 |
+
original_video_data = None
|
86 |
+
processed_video_data = None # For example pairs, these are loaded directly
|
87 |
+
|
88 |
+
if example_option != "None":
|
89 |
+
# An example pair was chosen. Load the videos from disk.
|
90 |
+
if example_option == "T Example":
|
91 |
+
# T1.mp4: original, T2.mpg: processed (analysis completed video)
|
92 |
+
try:
|
93 |
+
with open("T1.mp4", "rb") as f:
|
94 |
+
original_video_data = f.read()
|
95 |
+
with open("T2.mpg", "rb") as f:
|
96 |
+
processed_video_data = f.read()
|
97 |
+
except Exception as ex:
|
98 |
+
st.error("Error loading T Example videos. Ensure T1.mp4 and T2.mpg are in your repo.")
|
99 |
+
elif example_option == "LA Example":
|
100 |
+
# LA1.mp4: original, LA2.mp4: processed
|
101 |
+
try:
|
102 |
+
with open("LA1.mp4", "rb") as f:
|
103 |
+
original_video_data = f.read()
|
104 |
+
with open("LA2.mp4", "rb") as f:
|
105 |
+
processed_video_data = f.read()
|
106 |
+
except Exception as ex:
|
107 |
+
st.error("Error loading LA Example videos. Ensure LA1.mp4 and LA2.mp4 are in your repo.")
|
108 |
+
else:
|
109 |
+
# No example selected. Use uploaded file if available.
|
110 |
+
if source_file:
|
111 |
+
file_type = source_file.type.split('/')[0]
|
112 |
+
if file_type == 'image':
|
113 |
+
# For images, simply show the uploaded image (and detection result below)
|
114 |
+
original_image = PIL.Image.open(source_file)
|
115 |
+
# Convert image to bytes for display if needed
|
116 |
+
buf = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
117 |
+
original_image.save(buf.name, format="PNG")
|
118 |
+
with open(buf.name, "rb") as f:
|
119 |
+
original_video_data = f.read() # Actually, this is just an image preview.
|
120 |
+
else:
|
121 |
+
# For video, save to a temporary file and load its bytes.
|
122 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
123 |
+
tfile.write(source_file.read())
|
124 |
+
tfile.flush()
|
125 |
+
with open(tfile.name, "rb") as vf:
|
126 |
+
original_video_data = vf.read()
|
127 |
+
# Also open video with OpenCV for processing below.
|
128 |
+
vidcap = cv2.VideoCapture(tfile.name)
|
129 |
+
else:
|
130 |
+
st.info("Please select an example pair or upload a file.")
|
131 |
+
|
132 |
+
###############################################################################
|
133 |
+
# Display the Original and Result columns side-by-side
|
134 |
+
###############################################################################
|
135 |
+
col1, col2 = st.columns(2)
|
136 |
+
|
137 |
+
# Left column: Original video
|
138 |
+
with col1:
|
139 |
+
st.subheader("Original File")
|
140 |
+
if original_video_data:
|
141 |
+
show_autoplay_video(original_video_data, title="Original")
|
142 |
+
else:
|
143 |
+
st.info("No original video available.")
|
144 |
+
|
145 |
+
###############################################################################
|
146 |
+
# DETECTION: For uploaded video files (not example pairs) run YOLO analysis
|
147 |
+
###############################################################################
|
148 |
+
# We only run detection if no example pair is selected and if an upload is provided.
|
149 |
+
if example_option == "None" and source_file and source_file.type.split('/')[0] != 'image':
|
150 |
+
# Reset processed frames for a new analysis
|
151 |
st.session_state["processed_frames"] = []
|
152 |
+
frame_count = 0
|
153 |
+
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
154 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
155 |
+
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
156 |
+
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
157 |
+
|
158 |
+
# Determine sampling interval
|
159 |
+
if video_option == "Original FPS":
|
160 |
+
sample_interval = 1
|
161 |
+
output_fps = orig_fps
|
162 |
+
elif video_option == "1 fps":
|
163 |
+
sample_interval = int(orig_fps) if orig_fps > 0 else 1
|
164 |
+
output_fps = 1
|
165 |
+
elif video_option == "1 frame per 5 seconds":
|
166 |
+
sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5
|
167 |
+
output_fps = 1
|
168 |
+
elif video_option == "1 frame per 10 seconds":
|
169 |
+
sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10
|
170 |
+
output_fps = 1
|
171 |
+
elif video_option == "1 frame per 15 seconds":
|
172 |
+
sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15
|
173 |
+
output_fps = 1
|
174 |
+
else:
|
175 |
+
sample_interval = 1
|
176 |
+
output_fps = orig_fps
|
177 |
+
|
178 |
+
success, image = vidcap.read()
|
179 |
+
while success:
|
180 |
+
if frame_count % sample_interval == 0:
|
181 |
+
res = model.predict(image, conf=confidence)
|
182 |
+
res_plotted = res[0].plot()[:, :, ::-1]
|
183 |
+
st.session_state["processed_frames"].append(res_plotted)
|
184 |
+
# Update progress
|
185 |
+
if total_frames > 0:
|
186 |
+
progress_pct = int((frame_count / total_frames) * 100)
|
187 |
+
progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
|
188 |
+
progress_bar.progress(min(100, progress_pct))
|
189 |
+
else:
|
190 |
+
progress_text.text(f"Processing frame {frame_count}")
|
191 |
+
frame_count += 1
|
192 |
+
success, image = vidcap.read()
|
193 |
|
194 |
+
progress_text.text("Video processing complete!")
|
195 |
+
progress_bar.progress(100)
|
|
|
196 |
|
197 |
+
# Create shortened video from processed frames
|
198 |
+
processed_frames = st.session_state["processed_frames"]
|
199 |
+
if processed_frames:
|
200 |
+
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
201 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
202 |
+
out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
|
203 |
+
for frame in processed_frames:
|
204 |
+
out.write(frame)
|
205 |
+
out.release()
|
206 |
|
207 |
+
with open(temp_video_file.name, 'rb') as video_file:
|
208 |
+
st.session_state["shortened_video_data"] = video_file.read()
|
209 |
+
st.session_state["shortened_video_ready"] = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
st.success("Processed video created successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
###############################################################################
|
214 |
+
# Right column: Display the Processed (Result) video
|
215 |
+
###############################################################################
|
216 |
+
with col2:
|
217 |
+
st.subheader("Result File")
|
218 |
+
# For example pairs, use the preloaded processed_video_data
|
219 |
+
if processed_video_data:
|
220 |
+
show_autoplay_video(processed_video_data, title="Processed")
|
221 |
+
# Otherwise, if a processed video has been generated from an upload, show it
|
222 |
+
elif st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
|
223 |
+
show_autoplay_video(st.session_state["shortened_video_data"], title="Processed")
|
224 |
+
else:
|
225 |
+
st.info("No processed video available yet. Run detection if you uploaded a file.")
|
226 |
+
|
227 |
+
###############################################################################
|
228 |
+
# Always display the download button if a processed video is ready
|
229 |
+
###############################################################################
|
230 |
if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
|
231 |
st.download_button(
|
232 |
+
label="Download Processed Video",
|
233 |
data=st.session_state["shortened_video_data"],
|
234 |
+
file_name="processed_video.mp4",
|
235 |
mime="video/mp4"
|
236 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|