Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,145 +1,143 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
| 3 |
import cv2
|
| 4 |
import streamlit as st
|
|
|
|
| 5 |
from ultralytics import YOLO
|
| 6 |
-
import tempfile
|
| 7 |
-
import time
|
| 8 |
-
import os
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
#
|
| 14 |
st.set_page_config(
|
| 15 |
-
page_title="
|
| 16 |
page_icon="🔥",
|
| 17 |
layout="wide",
|
| 18 |
initial_sidebar_state="expanded"
|
| 19 |
)
|
| 20 |
|
| 21 |
-
#
|
| 22 |
with st.sidebar:
|
| 23 |
st.header("IMAGE/VIDEO UPLOAD")
|
| 24 |
source_file = st.file_uploader(
|
| 25 |
-
"Choose an image or video...", type=("jpg", "jpeg", "png",
|
| 26 |
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
| 27 |
-
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
|
| 31 |
-
"5 FPS": 5,
|
| 32 |
-
"1 frame / 5s": 5,
|
| 33 |
-
"1 frame / 10s": 10,
|
| 34 |
-
"1 frame / 15s": 15
|
| 35 |
-
}
|
| 36 |
-
sampling_rate = st.selectbox("Analysis Rate", list(sampling_options.keys()), index=1)
|
| 37 |
|
| 38 |
-
#
|
| 39 |
st.title("WildfireWatch: Detecting Wildfire using AI")
|
| 40 |
-
|
| 41 |
-
# Adding informative pictures and description about the motivation for the app
|
| 42 |
col1, col2 = st.columns(2)
|
| 43 |
with col1:
|
| 44 |
-
st.image("https://huggingface.co/spaces/
|
| 45 |
with col2:
|
| 46 |
-
st.image("https://huggingface.co/spaces/
|
| 47 |
|
| 48 |
st.markdown("""
|
| 49 |
-
|
| 50 |
""")
|
| 51 |
-
|
| 52 |
st.markdown("---")
|
|
|
|
| 53 |
|
| 54 |
-
st.header("Let's Detect Wildfire")
|
| 55 |
-
|
| 56 |
-
# Creating two columns on the main page
|
| 57 |
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
#
|
| 60 |
-
with col1:
|
| 61 |
-
if source_file:
|
| 62 |
-
if source_file.type.split('/')[0] == 'image':
|
| 63 |
-
uploaded_image = PIL.Image.open(source_file)
|
| 64 |
-
st.image(source_file, caption="Uploaded Image", use_column_width=True)
|
| 65 |
-
else:
|
| 66 |
-
tfile = tempfile.NamedTemporaryFile(delete=False)
|
| 67 |
-
tfile.write(source_file.read())
|
| 68 |
-
vidcap = cv2.VideoCapture(tfile.name)
|
| 69 |
-
|
| 70 |
try:
|
| 71 |
model = YOLO(model_path)
|
| 72 |
except Exception as ex:
|
| 73 |
st.error(f"Unable to load model. Check the specified path: {model_path}")
|
| 74 |
st.error(ex)
|
| 75 |
-
st.stop()
|
| 76 |
|
| 77 |
-
if st.sidebar.button(
|
| 78 |
if not source_file:
|
| 79 |
-
st.
|
| 80 |
elif source_file.type.split('/')[0] == 'image':
|
|
|
|
| 81 |
res = model.predict(uploaded_image, conf=confidence)
|
| 82 |
boxes = res[0].boxes
|
| 83 |
res_plotted = res[0].plot()[:, :, ::-1]
|
| 84 |
with col2:
|
| 85 |
st.image(res_plotted, caption='Detected Image', use_column_width=True)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
st.write(box.xywh)
|
| 90 |
-
except Exception as ex:
|
| 91 |
-
st.write("No image is uploaded yet!")
|
| 92 |
else:
|
| 93 |
-
#
|
| 94 |
-
|
| 95 |
-
fps = int(vidcap.get(cv2.CAP_PROP_FPS)) or 30
|
| 96 |
-
frame_width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 97 |
-
frame_height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 98 |
-
target_rate = sampling_options[sampling_rate]
|
| 99 |
-
frame_skip = 1 if target_rate == 0 else max(1, int(fps / target_rate) if target_rate <= 5 else int(fps * target_rate))
|
| 100 |
-
|
| 101 |
-
# Output video setup
|
| 102 |
-
output_tfile = tempfile.NamedTemporaryFile(delete=False, suffix='_detected.mp4')
|
| 103 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 104 |
-
output_fps = 1 # Fixed for short compilation
|
| 105 |
-
out = cv2.VideoWriter(output_tfile.name, fourcc, output_fps, (frame_width, frame_height))
|
| 106 |
-
|
| 107 |
-
success, image = vidcap.read()
|
| 108 |
frame_count = 0
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
while success:
|
| 112 |
-
if frame_count %
|
| 113 |
res = model.predict(image, conf=confidence)
|
| 114 |
-
boxes = res[0].boxes
|
| 115 |
res_plotted = res[0].plot()[:, :, ::-1]
|
|
|
|
| 116 |
with col2:
|
| 117 |
st.image(res_plotted, caption=f'Detected Frame {frame_count}', use_column_width=True)
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
st.write(box.xywh)
|
| 122 |
-
except Exception as ex:
|
| 123 |
-
st.write("No detection results available.")
|
| 124 |
-
out.write(res_plotted[:, :, ::-1]) # Write only analyzed frame
|
| 125 |
-
processed_count += 1
|
| 126 |
-
if total_frames > 0:
|
| 127 |
-
progress = (frame_count + 1) / total_frames * 100
|
| 128 |
-
st.write(f"Progress: {progress:.1f}% (Analyzed {processed_count} frames)")
|
| 129 |
-
success, image = vidcap.read()
|
| 130 |
frame_count += 1
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
vidcap.release()
|
| 134 |
-
out.release()
|
| 135 |
-
os.unlink(tfile.name)
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
st.download_button(
|
| 140 |
-
label="Download
|
| 141 |
-
data=
|
| 142 |
-
file_name="
|
| 143 |
mime="video/mp4"
|
| 144 |
)
|
| 145 |
-
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tempfile
|
| 3 |
import cv2
|
| 4 |
import streamlit as st
|
| 5 |
+
import PIL
|
| 6 |
from ultralytics import YOLO
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Required libraries (ensure these are in your requirements.txt):
|
| 9 |
+
# streamlit
|
| 10 |
+
# opencv-python-headless
|
| 11 |
+
# ultralytics
|
| 12 |
+
# Pillow
|
| 13 |
+
|
| 14 |
+
# Replace with your model's URL or local path
|
| 15 |
+
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/blob/main/best.pt'
|
| 16 |
|
| 17 |
+
# Configure the page for Hugging Face Spaces
|
| 18 |
st.set_page_config(
|
| 19 |
+
page_title="Fire Watch using AI vision models",
|
| 20 |
page_icon="🔥",
|
| 21 |
layout="wide",
|
| 22 |
initial_sidebar_state="expanded"
|
| 23 |
)
|
| 24 |
|
| 25 |
+
# Sidebar for file upload and settings
|
| 26 |
with st.sidebar:
|
| 27 |
st.header("IMAGE/VIDEO UPLOAD")
|
| 28 |
source_file = st.file_uploader(
|
| 29 |
+
"Choose an image or video...", type=("jpg", "jpeg", "png", "bmp", "webp", "mp4"))
|
| 30 |
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
| 31 |
+
video_option = st.selectbox(
|
| 32 |
+
"Select Video Shortening Option",
|
| 33 |
+
["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"]
|
| 34 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# Main page header and introduction images
|
| 37 |
st.title("WildfireWatch: Detecting Wildfire using AI")
|
|
|
|
|
|
|
| 38 |
col1, col2 = st.columns(2)
|
| 39 |
with col1:
|
| 40 |
+
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_1.jpeg", use_column_width=True)
|
| 41 |
with col2:
|
| 42 |
+
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
|
| 43 |
|
| 44 |
st.markdown("""
|
| 45 |
+
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas. Early detection is critical to mitigating risks. WildfireWatch leverages the YOLOv8 model for real-time fire and smoke detection in images and videos.
|
| 46 |
""")
|
|
|
|
| 47 |
st.markdown("---")
|
| 48 |
+
st.header("Fire Detection:")
|
| 49 |
|
|
|
|
|
|
|
|
|
|
| 50 |
col1, col2 = st.columns(2)
|
| 51 |
+
if source_file:
|
| 52 |
+
if source_file.type.split('/')[0] == 'image':
|
| 53 |
+
uploaded_image = PIL.Image.open(source_file)
|
| 54 |
+
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
|
| 55 |
+
else:
|
| 56 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
| 57 |
+
tfile.write(source_file.read())
|
| 58 |
+
vidcap = cv2.VideoCapture(tfile.name)
|
| 59 |
+
else:
|
| 60 |
+
st.info("Please upload an image or video file to begin.")
|
| 61 |
|
| 62 |
+
# Load the YOLO model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
try:
|
| 64 |
model = YOLO(model_path)
|
| 65 |
except Exception as ex:
|
| 66 |
st.error(f"Unable to load model. Check the specified path: {model_path}")
|
| 67 |
st.error(ex)
|
|
|
|
| 68 |
|
| 69 |
+
if st.sidebar.button("Let's Detect Wildfire"):
|
| 70 |
if not source_file:
|
| 71 |
+
st.warning("No file uploaded!")
|
| 72 |
elif source_file.type.split('/')[0] == 'image':
|
| 73 |
+
# Process image input
|
| 74 |
res = model.predict(uploaded_image, conf=confidence)
|
| 75 |
boxes = res[0].boxes
|
| 76 |
res_plotted = res[0].plot()[:, :, ::-1]
|
| 77 |
with col2:
|
| 78 |
st.image(res_plotted, caption='Detected Image', use_column_width=True)
|
| 79 |
+
with st.expander("Detection Results"):
|
| 80 |
+
for box in boxes:
|
| 81 |
+
st.write(box.xywh)
|
|
|
|
|
|
|
|
|
|
| 82 |
else:
|
| 83 |
+
# Process video input and shorten video based on sampling option
|
| 84 |
+
processed_frames = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
frame_count = 0
|
| 86 |
+
|
| 87 |
+
# Video properties
|
| 88 |
+
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 89 |
+
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 90 |
+
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 91 |
|
| 92 |
+
# Determine sampling interval and output fps
|
| 93 |
+
if video_option == "Original FPS":
|
| 94 |
+
sample_interval = 1 # process every frame
|
| 95 |
+
output_fps = orig_fps
|
| 96 |
+
elif video_option == "1 fps":
|
| 97 |
+
sample_interval = int(orig_fps) if orig_fps > 0 else 1
|
| 98 |
+
output_fps = 1
|
| 99 |
+
elif video_option == "1 frame per 5 seconds":
|
| 100 |
+
sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5
|
| 101 |
+
output_fps = 1
|
| 102 |
+
elif video_option == "1 frame per 10 seconds":
|
| 103 |
+
sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10
|
| 104 |
+
output_fps = 1
|
| 105 |
+
elif video_option == "1 frame per 15 seconds":
|
| 106 |
+
sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15
|
| 107 |
+
output_fps = 1
|
| 108 |
+
else:
|
| 109 |
+
sample_interval = 1
|
| 110 |
+
output_fps = orig_fps
|
| 111 |
+
|
| 112 |
+
success, image = vidcap.read()
|
| 113 |
while success:
|
| 114 |
+
if frame_count % sample_interval == 0:
|
| 115 |
res = model.predict(image, conf=confidence)
|
|
|
|
| 116 |
res_plotted = res[0].plot()[:, :, ::-1]
|
| 117 |
+
processed_frames.append(res_plotted)
|
| 118 |
with col2:
|
| 119 |
st.image(res_plotted, caption=f'Detected Frame {frame_count}', use_column_width=True)
|
| 120 |
+
with st.expander("Detection Results"):
|
| 121 |
+
for box in res[0].boxes:
|
| 122 |
+
st.write(box.xywh)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
frame_count += 1
|
| 124 |
+
success, image = vidcap.read()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
if processed_frames:
|
| 127 |
+
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
| 128 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 129 |
+
out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
|
| 130 |
+
for frame in processed_frames:
|
| 131 |
+
out.write(frame)
|
| 132 |
+
out.release()
|
| 133 |
+
|
| 134 |
+
st.success("Shortened video created successfully!")
|
| 135 |
+
with open(temp_video_file.name, 'rb') as video_file:
|
| 136 |
st.download_button(
|
| 137 |
+
label="Download Shortened Video",
|
| 138 |
+
data=video_file.read(),
|
| 139 |
+
file_name="shortened_video.mp4",
|
| 140 |
mime="video/mp4"
|
| 141 |
)
|
| 142 |
+
else:
|
| 143 |
+
st.error("No frames were processed from the video.")
|