Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,17 +5,12 @@ import streamlit as st
|
|
5 |
import PIL
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
-
# Required libraries
|
9 |
-
# streamlit
|
10 |
-
# opencv-python-headless
|
11 |
-
# ultralytics
|
12 |
-
# Pillow
|
13 |
|
14 |
-
# Replace with your model
|
15 |
-
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
|
16 |
|
17 |
-
|
18 |
-
# Configure the page for Hugging Face Spaces
|
19 |
st.set_page_config(
|
20 |
page_title="Fire Watch using AI vision models",
|
21 |
page_icon="🔥",
|
@@ -23,19 +18,23 @@ st.set_page_config(
|
|
23 |
initial_sidebar_state="expanded"
|
24 |
)
|
25 |
|
26 |
-
# Sidebar
|
27 |
with st.sidebar:
|
28 |
st.header("IMAGE/VIDEO UPLOAD")
|
29 |
source_file = st.file_uploader(
|
30 |
"Choose an image or video...", type=("jpg", "jpeg", "png", "bmp", "webp", "mp4"))
|
31 |
-
confidence = float(st.slider("Select Model Confidence",
|
32 |
video_option = st.selectbox(
|
33 |
"Select Video Shortening Option",
|
34 |
["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"]
|
35 |
)
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
# Main page header and
|
38 |
-
st.title("
|
39 |
col1, col2 = st.columns(2)
|
40 |
with col1:
|
41 |
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_1.jpeg", use_column_width=True)
|
@@ -43,11 +42,12 @@ with col2:
|
|
43 |
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
|
44 |
|
45 |
st.markdown("""
|
46 |
-
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote
|
47 |
""")
|
48 |
st.markdown("---")
|
49 |
st.header("Fire Detection:")
|
50 |
|
|
|
51 |
col1, col2 = st.columns(2)
|
52 |
if source_file:
|
53 |
if source_file.type.split('/')[0] == 'image':
|
@@ -60,18 +60,26 @@ if source_file:
|
|
60 |
else:
|
61 |
st.info("Please upload an image or video file to begin.")
|
62 |
|
63 |
-
# Load
|
64 |
try:
|
65 |
model = YOLO(model_path)
|
66 |
except Exception as ex:
|
67 |
st.error(f"Unable to load model. Check the specified path: {model_path}")
|
68 |
st.error(ex)
|
69 |
|
70 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
if not source_file:
|
72 |
st.warning("No file uploaded!")
|
73 |
elif source_file.type.split('/')[0] == 'image':
|
74 |
-
# Process image input
|
75 |
res = model.predict(uploaded_image, conf=confidence)
|
76 |
boxes = res[0].boxes
|
77 |
res_plotted = res[0].plot()[:, :, ::-1]
|
@@ -81,18 +89,19 @@ if st.sidebar.button("Let's Detect fire"):
|
|
81 |
for box in boxes:
|
82 |
st.write(box.xywh)
|
83 |
else:
|
84 |
-
# Process video input
|
85 |
processed_frames = []
|
86 |
frame_count = 0
|
87 |
|
88 |
-
#
|
89 |
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
|
|
90 |
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
91 |
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
92 |
-
|
93 |
-
# Determine sampling interval and output fps
|
94 |
if video_option == "Original FPS":
|
95 |
-
sample_interval = 1
|
96 |
output_fps = orig_fps
|
97 |
elif video_option == "1 fps":
|
98 |
sample_interval = int(orig_fps) if orig_fps > 0 else 1
|
@@ -110,20 +119,47 @@ if st.sidebar.button("Let's Detect fire"):
|
|
110 |
sample_interval = 1
|
111 |
output_fps = orig_fps
|
112 |
|
|
|
|
|
|
|
|
|
113 |
success, image = vidcap.read()
|
114 |
while success:
|
115 |
if frame_count % sample_interval == 0:
|
|
|
116 |
res = model.predict(image, conf=confidence)
|
117 |
res_plotted = res[0].plot()[:, :, ::-1]
|
118 |
processed_frames.append(res_plotted)
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
frame_count += 1
|
125 |
success, image = vidcap.read()
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
127 |
if processed_frames:
|
128 |
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
129 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
|
5 |
import PIL
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
+
# Required libraries: streamlit, opencv-python-headless, ultralytics, Pillow
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Replace with your model URL or local file path
|
11 |
+
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
|
12 |
|
13 |
+
# Configure page layout for Hugging Face Spaces
|
|
|
14 |
st.set_page_config(
|
15 |
page_title="Fire Watch using AI vision models",
|
16 |
page_icon="🔥",
|
|
|
18 |
initial_sidebar_state="expanded"
|
19 |
)
|
20 |
|
21 |
+
# Sidebar: Upload file, select confidence and video shortening options.
|
22 |
with st.sidebar:
|
23 |
st.header("IMAGE/VIDEO UPLOAD")
|
24 |
source_file = st.file_uploader(
|
25 |
"Choose an image or video...", type=("jpg", "jpeg", "png", "bmp", "webp", "mp4"))
|
26 |
+
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
27 |
video_option = st.selectbox(
|
28 |
"Select Video Shortening Option",
|
29 |
["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"]
|
30 |
)
|
31 |
+
progress_text = st.empty()
|
32 |
+
progress_bar = st.progress(0)
|
33 |
+
# A container for our frame slider (viewer)
|
34 |
+
slider_container = st.empty()
|
35 |
|
36 |
+
# Main page header and intro images
|
37 |
+
st.title("WildfireWatch: Detecting Wildfire using AI")
|
38 |
col1, col2 = st.columns(2)
|
39 |
with col1:
|
40 |
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_1.jpeg", use_column_width=True)
|
|
|
42 |
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
|
43 |
|
44 |
st.markdown("""
|
45 |
+
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas. Early detection is critical. WildfireWatch leverages YOLOv8 for real‐time fire and smoke detection in images and videos.
|
46 |
""")
|
47 |
st.markdown("---")
|
48 |
st.header("Fire Detection:")
|
49 |
|
50 |
+
# Create two columns for displaying the upload and results.
|
51 |
col1, col2 = st.columns(2)
|
52 |
if source_file:
|
53 |
if source_file.type.split('/')[0] == 'image':
|
|
|
60 |
else:
|
61 |
st.info("Please upload an image or video file to begin.")
|
62 |
|
63 |
+
# Load YOLO model
|
64 |
try:
|
65 |
model = YOLO(model_path)
|
66 |
except Exception as ex:
|
67 |
st.error(f"Unable to load model. Check the specified path: {model_path}")
|
68 |
st.error(ex)
|
69 |
|
70 |
+
# Initialize session state for frame viewer if not already set
|
71 |
+
if 'viewer_frame' not in st.session_state:
|
72 |
+
st.session_state.viewer_frame = 0
|
73 |
+
|
74 |
+
# This container will display the currently viewed frame
|
75 |
+
viewer_slot = st.empty()
|
76 |
+
|
77 |
+
# When the user clicks the detect button...
|
78 |
+
if st.sidebar.button("Let's Detect Wildfire"):
|
79 |
if not source_file:
|
80 |
st.warning("No file uploaded!")
|
81 |
elif source_file.type.split('/')[0] == 'image':
|
82 |
+
# Process image input.
|
83 |
res = model.predict(uploaded_image, conf=confidence)
|
84 |
boxes = res[0].boxes
|
85 |
res_plotted = res[0].plot()[:, :, ::-1]
|
|
|
89 |
for box in boxes:
|
90 |
st.write(box.xywh)
|
91 |
else:
|
92 |
+
# Process video input.
|
93 |
processed_frames = []
|
94 |
frame_count = 0
|
95 |
|
96 |
+
# Get video properties.
|
97 |
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
98 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
99 |
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
100 |
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
101 |
+
|
102 |
+
# Determine sampling interval and output fps based on option selected.
|
103 |
if video_option == "Original FPS":
|
104 |
+
sample_interval = 1
|
105 |
output_fps = orig_fps
|
106 |
elif video_option == "1 fps":
|
107 |
sample_interval = int(orig_fps) if orig_fps > 0 else 1
|
|
|
119 |
sample_interval = 1
|
120 |
output_fps = orig_fps
|
121 |
|
122 |
+
# Initial slider for frame viewing.
|
123 |
+
slider_val = st.session_state.viewer_frame
|
124 |
+
slider = slider_container.slider("Frame Viewer", min_value=0, max_value=0, value=slider_val, step=1, key="frame_slider")
|
125 |
+
|
126 |
success, image = vidcap.read()
|
127 |
while success:
|
128 |
if frame_count % sample_interval == 0:
|
129 |
+
# Run detection on current frame.
|
130 |
res = model.predict(image, conf=confidence)
|
131 |
res_plotted = res[0].plot()[:, :, ::-1]
|
132 |
processed_frames.append(res_plotted)
|
133 |
+
|
134 |
+
# Update progress.
|
135 |
+
if total_frames > 0:
|
136 |
+
progress_pct = int((frame_count / total_frames) * 100)
|
137 |
+
progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
|
138 |
+
progress_bar.progress(min(100, progress_pct))
|
139 |
+
else:
|
140 |
+
progress_text.text(f"Processing frame {frame_count}")
|
141 |
+
|
142 |
+
# Update the slider's max value. Preserve current value.
|
143 |
+
current_index = st.session_state.get("frame_slider", len(processed_frames) - 1)
|
144 |
+
slider = slider_container.slider("Frame Viewer",
|
145 |
+
min_value=0,
|
146 |
+
max_value=len(processed_frames)-1,
|
147 |
+
value=current_index,
|
148 |
+
step=1,
|
149 |
+
key="frame_slider")
|
150 |
+
|
151 |
+
# If the user is at the latest frame, update the viewer.
|
152 |
+
if st.session_state.frame_slider == len(processed_frames)-1:
|
153 |
+
viewer_slot.image(processed_frames[-1], caption=f"Frame {len(processed_frames)-1}", use_column_width=True)
|
154 |
+
|
155 |
frame_count += 1
|
156 |
success, image = vidcap.read()
|
157 |
+
|
158 |
+
# Video processing complete.
|
159 |
+
progress_text.text("Video processing complete!")
|
160 |
+
progress_bar.progress(100)
|
161 |
+
|
162 |
+
# After processing, allow downloading the shortened video.
|
163 |
if processed_frames:
|
164 |
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
165 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|