Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,255 +1,145 @@
|
|
|
|
|
| 1 |
import PIL
|
| 2 |
import cv2
|
| 3 |
import streamlit as st
|
| 4 |
from ultralytics import YOLO
|
| 5 |
import tempfile
|
| 6 |
import time
|
| 7 |
-
import requests
|
| 8 |
-
import numpy as np
|
| 9 |
import os
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
st.
|
| 16 |
-
""
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
color: #1a1a1a;
|
| 21 |
-
}
|
| 22 |
-
h1 {
|
| 23 |
-
color: #1a1a1a;
|
| 24 |
-
}
|
| 25 |
-
.stTabs > div > button {
|
| 26 |
-
background-color: #e0e0e0;
|
| 27 |
-
color: #333333;
|
| 28 |
-
font-weight: bold;
|
| 29 |
-
}
|
| 30 |
-
.stTabs > div > button:hover {
|
| 31 |
-
background-color: #d0d0d0;
|
| 32 |
-
color: #333333;
|
| 33 |
-
}
|
| 34 |
-
.stTabs > div > button[aria-selected="true"] {
|
| 35 |
-
background-color: #ffffff;
|
| 36 |
-
color: #333333;
|
| 37 |
-
}
|
| 38 |
-
.main .block-container {
|
| 39 |
-
max-height: 100vh;
|
| 40 |
-
overflow-y: auto;
|
| 41 |
-
}
|
| 42 |
-
.stImage > img {
|
| 43 |
-
max-height: 50vh;
|
| 44 |
-
object-fit: contain;
|
| 45 |
-
}
|
| 46 |
-
</style>
|
| 47 |
-
""",
|
| 48 |
-
unsafe_allow_html=True
|
| 49 |
)
|
| 50 |
|
| 51 |
-
#
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
st.
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
#
|
| 67 |
st.title("WildfireWatch: Detecting Wildfire using AI")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
st.markdown("""
|
| 69 |
-
Wildfires are a major environmental issue, causing substantial losses to ecosystems, human livelihoods, and potentially leading to loss of life. Early detection of wildfires can prevent these losses. Our application uses state-of-the-art YOLOv8 model for real-time wildfire and smoke detection.
|
| 70 |
""")
|
|
|
|
| 71 |
st.markdown("---")
|
| 72 |
|
| 73 |
-
|
| 74 |
-
tabs = st.tabs(["Upload", "Webcam"])
|
| 75 |
|
| 76 |
-
#
|
| 77 |
-
|
| 78 |
-
col1, col2 = st.columns(2)
|
| 79 |
-
with col1:
|
| 80 |
-
st.markdown("**Add Your File**")
|
| 81 |
-
st.write("Upload an image or video to scan for fire or smoke.")
|
| 82 |
-
source_file = st.file_uploader("", type=["jpg", "jpeg", "png", "mp4"], label_visibility="collapsed")
|
| 83 |
-
confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="upload_conf")
|
| 84 |
-
sampling_options = {
|
| 85 |
-
"Every Frame": 0,
|
| 86 |
-
"1 FPS": 1,
|
| 87 |
-
"2 FPS": 2,
|
| 88 |
-
"5 FPS": 5,
|
| 89 |
-
"1 frame / 5s": 5,
|
| 90 |
-
"1 frame / 10s": 10,
|
| 91 |
-
"1 frame / 15s": 15
|
| 92 |
-
}
|
| 93 |
-
sampling_rate = st.selectbox("Analysis Rate", list(sampling_options.keys()), index=1, key="sampling_rate")
|
| 94 |
-
|
| 95 |
-
with col2:
|
| 96 |
-
frame_placeholder = st.empty()
|
| 97 |
-
status_placeholder = st.empty()
|
| 98 |
-
download_placeholder = st.empty()
|
| 99 |
-
|
| 100 |
-
if source_file and st.button("Detect Wildfire", key="upload_detect"):
|
| 101 |
-
try:
|
| 102 |
-
st.write(f"File size: {source_file.size / 1024 / 1024:.2f} MB") # Diagnostic
|
| 103 |
-
file_type = source_file.type.split('/')[0]
|
| 104 |
-
if file_type == 'image':
|
| 105 |
-
uploaded_image = PIL.Image.open(source_file)
|
| 106 |
-
res = model.predict(uploaded_image, conf=confidence)
|
| 107 |
-
detected_image = res[0].plot()[:, :, ::-1]
|
| 108 |
-
frame_placeholder.image(detected_image, use_column_width=True)
|
| 109 |
-
status_placeholder.write(f"Objects detected: {len(res[0].boxes)}")
|
| 110 |
-
elif file_type == 'video':
|
| 111 |
-
# Save input video
|
| 112 |
-
tfile = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
| 113 |
-
tfile.write(source_file.read())
|
| 114 |
-
tfile.close()
|
| 115 |
-
|
| 116 |
-
# Open video
|
| 117 |
-
vidcap = cv2.VideoCapture(tfile.name)
|
| 118 |
-
if not vidcap.isOpened():
|
| 119 |
-
status_placeholder.error("Failed to open video file.")
|
| 120 |
-
else:
|
| 121 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 122 |
-
fps = int(vidcap.get(cv2.CAP_PROP_FPS)) or 30
|
| 123 |
-
frame_width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 124 |
-
frame_height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 125 |
-
|
| 126 |
-
# Frame sampling
|
| 127 |
-
target_rate = sampling_options[sampling_rate]
|
| 128 |
-
frame_skip = 1 if target_rate == 0 else max(1, int(fps / target_rate) if target_rate <= 5 else int(fps * target_rate))
|
| 129 |
-
|
| 130 |
-
# Output video (only analyzed frames)
|
| 131 |
-
output_tfile = tempfile.NamedTemporaryFile(delete=False, suffix='_detected.mp4')
|
| 132 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 133 |
-
output_fps = 1 # Fixed for short compilation
|
| 134 |
-
out = cv2.VideoWriter(output_tfile.name, fourcc, output_fps, (frame_width, frame_height))
|
| 135 |
-
|
| 136 |
-
success, frame = vidcap.read()
|
| 137 |
-
frame_count = 0
|
| 138 |
-
processed_count = 0
|
| 139 |
-
|
| 140 |
-
while success:
|
| 141 |
-
if frame_count % frame_skip == 0:
|
| 142 |
-
res = model.predict(frame, conf=confidence)
|
| 143 |
-
detected_frame = res[0].plot()[:, :, ::-1]
|
| 144 |
-
frame_placeholder.image(detected_frame, use_column_width=True)
|
| 145 |
-
status_placeholder.write(f"Frame {frame_count}: Objects detected: {len(res[0].boxes)}")
|
| 146 |
-
out.write(detected_frame[:, :, ::-1])
|
| 147 |
-
processed_count += 1
|
| 148 |
-
if total_frames > 0:
|
| 149 |
-
progress = (frame_count + 1) / total_frames * 100
|
| 150 |
-
st.write(f"Progress: {progress:.1f}% (Analyzed {processed_count} frames)")
|
| 151 |
-
success, frame = vidcap.read()
|
| 152 |
-
frame_count += 1
|
| 153 |
-
time.sleep(0.05)
|
| 154 |
-
|
| 155 |
-
vidcap.release()
|
| 156 |
-
out.release()
|
| 157 |
-
|
| 158 |
-
os.unlink(tfile.name)
|
| 159 |
-
with open(output_tfile.name, 'rb') as f:
|
| 160 |
-
download_placeholder.download_button(
|
| 161 |
-
label="Download Analyzed Video",
|
| 162 |
-
data=f,
|
| 163 |
-
file_name="analyzed_video.mp4",
|
| 164 |
-
mime="video/mp4"
|
| 165 |
-
)
|
| 166 |
-
status_placeholder.write(f"Video processing complete. Analyzed {processed_count} frames.")
|
| 167 |
-
except Exception as e:
|
| 168 |
-
status_placeholder.error(f"Error: {str(e)}")
|
| 169 |
|
| 170 |
-
#
|
| 171 |
-
with
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
stop = st.button("Stop Monitoring", key="webcam_stop")
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
frame_placeholder.image(detected_frame, use_column_width=True)
|
| 212 |
-
status_placeholder.write(f"Objects detected: {len(res[0].boxes)}")
|
| 213 |
-
time.sleep(0.1)
|
| 214 |
-
except Exception as e:
|
| 215 |
-
status_placeholder.error(f"Video error: {e}")
|
| 216 |
-
st.session_state.monitoring = False
|
| 217 |
-
break
|
| 218 |
-
cap.release()
|
| 219 |
-
else:
|
| 220 |
-
status_placeholder.write("Monitoring image-based webcam...")
|
| 221 |
-
while st.session_state.monitoring:
|
| 222 |
try:
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
except Exception as e:
|
| 251 |
-
status_placeholder.error(f"Image fetch error: {e}")
|
| 252 |
-
st.session_state.monitoring = False
|
| 253 |
-
break
|
| 254 |
-
if not st.session_state.monitoring:
|
| 255 |
-
timer_placeholder.write("Monitoring stopped.")
|
|
|
|
| 1 |
+
# Import required libraries
|
| 2 |
import PIL
|
| 3 |
import cv2
|
| 4 |
import streamlit as st
|
| 5 |
from ultralytics import YOLO
|
| 6 |
import tempfile
|
| 7 |
import time
|
|
|
|
|
|
|
| 8 |
import os
|
| 9 |
|
| 10 |
+
# Replace the relative path to your weight file
|
| 11 |
+
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt' # Your correct model
|
| 12 |
|
| 13 |
+
# Setting page layout
|
| 14 |
+
st.set_page_config(
|
| 15 |
+
page_title="WildfireWatch",
|
| 16 |
+
page_icon="🔥",
|
| 17 |
+
layout="wide",
|
| 18 |
+
initial_sidebar_state="expanded"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
)
|
| 20 |
|
| 21 |
+
# Creating sidebar
|
| 22 |
+
with st.sidebar:
|
| 23 |
+
st.header("IMAGE/VIDEO UPLOAD")
|
| 24 |
+
source_file = st.file_uploader(
|
| 25 |
+
"Choose an image or video...", type=("jpg", "jpeg", "png", 'bmp', 'webp', 'mp4'))
|
| 26 |
+
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
| 27 |
+
sampling_options = {
|
| 28 |
+
"Every Frame": 0,
|
| 29 |
+
"1 FPS": 1,
|
| 30 |
+
"2 FPS": 2,
|
| 31 |
+
"5 FPS": 5,
|
| 32 |
+
"1 frame / 5s": 5,
|
| 33 |
+
"1 frame / 10s": 10,
|
| 34 |
+
"1 frame / 15s": 15
|
| 35 |
+
}
|
| 36 |
+
sampling_rate = st.selectbox("Analysis Rate", list(sampling_options.keys()), index=1)
|
| 37 |
|
| 38 |
+
# Creating main page heading
|
| 39 |
st.title("WildfireWatch: Detecting Wildfire using AI")
|
| 40 |
+
|
| 41 |
+
# Adding informative pictures and description about the motivation for the app
|
| 42 |
+
col1, col2 = st.columns(2)
|
| 43 |
+
with col1:
|
| 44 |
+
st.image("https://huggingface.co/spaces/ankitkupadhyay/fire_and_smoke/resolve/main/Fire_1.jpeg", use_column_width=True)
|
| 45 |
+
with col2:
|
| 46 |
+
st.image("https://huggingface.co/spaces/ankitkupadhyay/fire_and_smoke/resolve/main/Fire_2.jpeg", use_column_width=True)
|
| 47 |
+
|
| 48 |
st.markdown("""
|
| 49 |
+
Wildfires are a major environmental issue, causing substantial losses to ecosystems, human livelihoods, and potentially leading to loss of life. Early detection of wildfires can prevent these losses. Our application, WildfireWatch, uses state-of-the-art YOLOv8 model for real-time wildfire and smoke detection in images and videos.
|
| 50 |
""")
|
| 51 |
+
|
| 52 |
st.markdown("---")
|
| 53 |
|
| 54 |
+
st.header("Let's Detect Wildfire")
|
|
|
|
| 55 |
|
| 56 |
+
# Creating two columns on the main page
|
| 57 |
+
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# Adding image to the first column if image is uploaded
|
| 60 |
+
with col1:
|
| 61 |
+
if source_file:
|
| 62 |
+
if source_file.type.split('/')[0] == 'image':
|
| 63 |
+
uploaded_image = PIL.Image.open(source_file)
|
| 64 |
+
st.image(source_file, caption="Uploaded Image", use_column_width=True)
|
| 65 |
+
else:
|
| 66 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
| 67 |
+
tfile.write(source_file.read())
|
| 68 |
+
vidcap = cv2.VideoCapture(tfile.name)
|
|
|
|
| 69 |
|
| 70 |
+
try:
|
| 71 |
+
model = YOLO(model_path)
|
| 72 |
+
except Exception as ex:
|
| 73 |
+
st.error(f"Unable to load model. Check the specified path: {model_path}")
|
| 74 |
+
st.error(ex)
|
| 75 |
+
st.stop()
|
| 76 |
|
| 77 |
+
if st.sidebar.button('Let\'s Detect Wildfire'):
|
| 78 |
+
if not source_file:
|
| 79 |
+
st.error("Please upload a file first!")
|
| 80 |
+
elif source_file.type.split('/')[0] == 'image':
|
| 81 |
+
res = model.predict(uploaded_image, conf=confidence)
|
| 82 |
+
boxes = res[0].boxes
|
| 83 |
+
res_plotted = res[0].plot()[:, :, ::-1]
|
| 84 |
+
with col2:
|
| 85 |
+
st.image(res_plotted, caption='Detected Image', use_column_width=True)
|
| 86 |
+
try:
|
| 87 |
+
with st.expander("Detection Results"):
|
| 88 |
+
for box in boxes:
|
| 89 |
+
st.write(box.xywh)
|
| 90 |
+
except Exception as ex:
|
| 91 |
+
st.write("No image is uploaded yet!")
|
| 92 |
+
else:
|
| 93 |
+
# Frame sampling setup
|
| 94 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 95 |
+
fps = int(vidcap.get(cv2.CAP_PROP_FPS)) or 30
|
| 96 |
+
frame_width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 97 |
+
frame_height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 98 |
+
target_rate = sampling_options[sampling_rate]
|
| 99 |
+
frame_skip = 1 if target_rate == 0 else max(1, int(fps / target_rate) if target_rate <= 5 else int(fps * target_rate))
|
| 100 |
|
| 101 |
+
# Output video setup
|
| 102 |
+
output_tfile = tempfile.NamedTemporaryFile(delete=False, suffix='_detected.mp4')
|
| 103 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 104 |
+
output_fps = 1 # Fixed for short compilation
|
| 105 |
+
out = cv2.VideoWriter(output_tfile.name, fourcc, output_fps, (frame_width, frame_height))
|
| 106 |
+
|
| 107 |
+
success, image = vidcap.read()
|
| 108 |
+
frame_count = 0
|
| 109 |
+
processed_count = 0
|
| 110 |
+
|
| 111 |
+
while success:
|
| 112 |
+
if frame_count % frame_skip == 0:
|
| 113 |
+
res = model.predict(image, conf=confidence)
|
| 114 |
+
boxes = res[0].boxes
|
| 115 |
+
res_plotted = res[0].plot()[:, :, ::-1]
|
| 116 |
+
with col2:
|
| 117 |
+
st.image(res_plotted, caption=f'Detected Frame {frame_count}', use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
try:
|
| 119 |
+
with st.expander("Detection Results"):
|
| 120 |
+
for box in boxes:
|
| 121 |
+
st.write(box.xywh)
|
| 122 |
+
except Exception as ex:
|
| 123 |
+
st.write("No detection results available.")
|
| 124 |
+
out.write(res_plotted[:, :, ::-1]) # Write only analyzed frame
|
| 125 |
+
processed_count += 1
|
| 126 |
+
if total_frames > 0:
|
| 127 |
+
progress = (frame_count + 1) / total_frames * 100
|
| 128 |
+
st.write(f"Progress: {progress:.1f}% (Analyzed {processed_count} frames)")
|
| 129 |
+
success, image = vidcap.read()
|
| 130 |
+
frame_count += 1
|
| 131 |
+
time.sleep(0.05)
|
| 132 |
+
|
| 133 |
+
vidcap.release()
|
| 134 |
+
out.release()
|
| 135 |
+
os.unlink(tfile.name)
|
| 136 |
+
|
| 137 |
+
with col2:
|
| 138 |
+
with open(output_tfile.name, 'rb') as f:
|
| 139 |
+
st.download_button(
|
| 140 |
+
label="Download Analyzed Video",
|
| 141 |
+
data=f,
|
| 142 |
+
file_name="analyzed_video.mp4",
|
| 143 |
+
mime="video/mp4"
|
| 144 |
+
)
|
| 145 |
+
st.write(f"Video processing complete. Analyzed {processed_count} frames.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|