Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,12 +5,7 @@ import streamlit as st
|
|
5 |
import PIL
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
-
#
|
9 |
-
# streamlit
|
10 |
-
# opencv-python-headless
|
11 |
-
# ultralytics
|
12 |
-
# Pillow
|
13 |
-
|
14 |
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
|
15 |
|
16 |
st.set_page_config(
|
@@ -20,17 +15,20 @@ st.set_page_config(
|
|
20 |
initial_sidebar_state="expanded"
|
21 |
)
|
22 |
|
|
|
23 |
with st.sidebar:
|
24 |
st.header("IMAGE/VIDEO UPLOAD")
|
25 |
-
source_file = st.file_uploader("Choose an image or video...",
|
|
|
26 |
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
27 |
-
video_option = st.selectbox(
|
28 |
-
|
|
|
|
|
29 |
progress_text = st.empty()
|
30 |
progress_bar = st.progress(0)
|
31 |
-
# A container where our dynamic slider (frame viewer) will be placed.
|
32 |
-
slider_container = st.empty()
|
33 |
|
|
|
34 |
st.title("WildfireWatch: Detecting Wildfire using AI")
|
35 |
col1, col2 = st.columns(2)
|
36 |
with col1:
|
@@ -39,49 +37,49 @@ with col2:
|
|
39 |
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
|
40 |
|
41 |
st.markdown("""
|
42 |
-
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas.
|
43 |
-
WildfireWatch leverages YOLOv8 for real
|
|
|
44 |
""")
|
45 |
st.markdown("---")
|
46 |
st.header("Fire Detection:")
|
47 |
|
48 |
-
#
|
49 |
col1, col2 = st.columns(2)
|
50 |
if source_file:
|
51 |
-
|
|
|
52 |
uploaded_image = PIL.Image.open(source_file)
|
53 |
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
|
54 |
else:
|
|
|
55 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
56 |
tfile.write(source_file.read())
|
57 |
vidcap = cv2.VideoCapture(tfile.name)
|
58 |
else:
|
59 |
st.info("Please upload an image or video file to begin.")
|
60 |
|
61 |
-
#
|
62 |
try:
|
63 |
model = YOLO(model_path)
|
64 |
except Exception as ex:
|
65 |
st.error(f"Unable to load model. Check the specified path: {model_path}")
|
66 |
st.error(ex)
|
67 |
|
68 |
-
#
|
69 |
if "processed_frames" not in st.session_state:
|
70 |
st.session_state["processed_frames"] = []
|
71 |
|
72 |
-
#
|
73 |
-
if "
|
74 |
-
st.session_state["
|
75 |
-
|
76 |
-
# Container to display the currently viewed frame.
|
77 |
-
viewer_slot = st.empty()
|
78 |
|
79 |
-
# ---
|
80 |
if st.sidebar.button("Let's Detect Wildfire"):
|
81 |
if not source_file:
|
82 |
st.warning("No file uploaded!")
|
83 |
-
elif
|
84 |
-
#
|
85 |
res = model.predict(uploaded_image, conf=confidence)
|
86 |
boxes = res[0].boxes
|
87 |
res_plotted = res[0].plot()[:, :, ::-1]
|
@@ -91,16 +89,21 @@ if st.sidebar.button("Let's Detect Wildfire"):
|
|
91 |
for box in boxes:
|
92 |
st.write(box.xywh)
|
93 |
else:
|
94 |
-
#
|
|
|
|
|
|
|
|
|
95 |
processed_frames = st.session_state["processed_frames"]
|
96 |
-
|
97 |
|
98 |
-
|
99 |
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
100 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
101 |
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
102 |
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
103 |
|
|
|
104 |
if video_option == "Original FPS":
|
105 |
sample_interval = 1
|
106 |
output_fps = orig_fps
|
@@ -123,12 +126,15 @@ if st.sidebar.button("Let's Detect Wildfire"):
|
|
123 |
success, image = vidcap.read()
|
124 |
while success:
|
125 |
if frame_count % sample_interval == 0:
|
|
|
126 |
res = model.predict(image, conf=confidence)
|
127 |
res_plotted = res[0].plot()[:, :, ::-1]
|
|
|
128 |
processed_frames.append(res_plotted)
|
129 |
-
|
|
|
130 |
|
131 |
-
# Update progress
|
132 |
if total_frames > 0:
|
133 |
progress_pct = int((frame_count / total_frames) * 100)
|
134 |
progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
|
@@ -136,44 +142,14 @@ if st.sidebar.button("Let's Detect Wildfire"):
|
|
136 |
else:
|
137 |
progress_text.text(f"Processing frame {frame_count}")
|
138 |
|
139 |
-
# --- Update the frame viewer slider dynamically ---
|
140 |
-
# Retrieve user's last slider selection.
|
141 |
-
last_slider = st.session_state.slider_value
|
142 |
-
# If the user was at the end, default to the new end.
|
143 |
-
if last_slider >= len(processed_frames):
|
144 |
-
default_val = len(processed_frames) - 1
|
145 |
-
else:
|
146 |
-
default_val = last_slider
|
147 |
-
|
148 |
-
# Clear the slider container and recreate the slider.
|
149 |
-
slider_container.empty()
|
150 |
-
# Use a dynamic key to avoid duplicate key errors.
|
151 |
-
slider_key = f"frame_slider_{len(processed_frames)}"
|
152 |
-
slider_val = slider_container.slider("Frame Viewer",
|
153 |
-
min_value=0,
|
154 |
-
max_value=len(processed_frames) - 1,
|
155 |
-
value=default_val,
|
156 |
-
step=1,
|
157 |
-
key=slider_key)
|
158 |
-
st.session_state.slider_value = slider_val
|
159 |
-
|
160 |
-
# If the slider is at the most recent frame, update the viewer.
|
161 |
-
if slider_val == len(processed_frames) - 1:
|
162 |
-
viewer_slot.image(processed_frames[-1],
|
163 |
-
caption=f"Frame {len(processed_frames) - 1}",
|
164 |
-
use_column_width=True)
|
165 |
-
else:
|
166 |
-
# Otherwise, show the frame corresponding to the slider.
|
167 |
-
viewer_slot.image(processed_frames[slider_val],
|
168 |
-
caption=f"Frame {slider_val}",
|
169 |
-
use_column_width=True)
|
170 |
frame_count += 1
|
171 |
success, image = vidcap.read()
|
172 |
|
|
|
173 |
progress_text.text("Video processing complete!")
|
174 |
progress_bar.progress(100)
|
175 |
|
176 |
-
#
|
177 |
if processed_frames:
|
178 |
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
179 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
@@ -190,5 +166,37 @@ if st.sidebar.button("Let's Detect Wildfire"):
|
|
190 |
file_name="shortened_video.mp4",
|
191 |
mime="video/mp4"
|
192 |
)
|
|
|
193 |
else:
|
194 |
st.error("No frames were processed from the video.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import PIL
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
+
# Ensure your model path points directly to the .pt file (not an HTML page)
|
|
|
|
|
|
|
|
|
|
|
9 |
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
|
10 |
|
11 |
st.set_page_config(
|
|
|
15 |
initial_sidebar_state="expanded"
|
16 |
)
|
17 |
|
18 |
+
# --- SIDEBAR ---
|
19 |
with st.sidebar:
|
20 |
st.header("IMAGE/VIDEO UPLOAD")
|
21 |
+
source_file = st.file_uploader("Choose an image or video...",
|
22 |
+
type=("jpg", "jpeg", "png", "bmp", "webp", "mp4"))
|
23 |
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
24 |
+
video_option = st.selectbox(
|
25 |
+
"Select Video Shortening Option",
|
26 |
+
["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"]
|
27 |
+
)
|
28 |
progress_text = st.empty()
|
29 |
progress_bar = st.progress(0)
|
|
|
|
|
30 |
|
31 |
+
# --- MAIN PAGE TITLE AND IMAGES ---
|
32 |
st.title("WildfireWatch: Detecting Wildfire using AI")
|
33 |
col1, col2 = st.columns(2)
|
34 |
with col1:
|
|
|
37 |
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
|
38 |
|
39 |
st.markdown("""
|
40 |
+
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas.
|
41 |
+
Early detection is critical. WildfireWatch leverages YOLOv8 for real-time fire and smoke detection
|
42 |
+
in images and videos.
|
43 |
""")
|
44 |
st.markdown("---")
|
45 |
st.header("Fire Detection:")
|
46 |
|
47 |
+
# --- DISPLAY UPLOADED FILE ---
|
48 |
col1, col2 = st.columns(2)
|
49 |
if source_file:
|
50 |
+
file_type = source_file.type.split('/')[0]
|
51 |
+
if file_type == 'image':
|
52 |
uploaded_image = PIL.Image.open(source_file)
|
53 |
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
|
54 |
else:
|
55 |
+
# Temporarily store the uploaded video
|
56 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
57 |
tfile.write(source_file.read())
|
58 |
vidcap = cv2.VideoCapture(tfile.name)
|
59 |
else:
|
60 |
st.info("Please upload an image or video file to begin.")
|
61 |
|
62 |
+
# --- LOAD YOLO MODEL ---
|
63 |
try:
|
64 |
model = YOLO(model_path)
|
65 |
except Exception as ex:
|
66 |
st.error(f"Unable to load model. Check the specified path: {model_path}")
|
67 |
st.error(ex)
|
68 |
|
69 |
+
# --- SESSION STATE FOR PROCESSED FRAMES ---
|
70 |
if "processed_frames" not in st.session_state:
|
71 |
st.session_state["processed_frames"] = []
|
72 |
|
73 |
+
# We'll keep the detection results for each frame (if you want them)
|
74 |
+
if "frame_detections" not in st.session_state:
|
75 |
+
st.session_state["frame_detections"] = []
|
|
|
|
|
|
|
76 |
|
77 |
+
# --- WHEN USER CLICKS DETECT ---
|
78 |
if st.sidebar.button("Let's Detect Wildfire"):
|
79 |
if not source_file:
|
80 |
st.warning("No file uploaded!")
|
81 |
+
elif file_type == 'image':
|
82 |
+
# IMAGE DETECTION
|
83 |
res = model.predict(uploaded_image, conf=confidence)
|
84 |
boxes = res[0].boxes
|
85 |
res_plotted = res[0].plot()[:, :, ::-1]
|
|
|
89 |
for box in boxes:
|
90 |
st.write(box.xywh)
|
91 |
else:
|
92 |
+
# VIDEO DETECTION
|
93 |
+
# Clear previous frames from session_state
|
94 |
+
st.session_state["processed_frames"] = []
|
95 |
+
st.session_state["frame_detections"] = []
|
96 |
+
|
97 |
processed_frames = st.session_state["processed_frames"]
|
98 |
+
frame_detections = st.session_state["frame_detections"]
|
99 |
|
100 |
+
frame_count = 0
|
101 |
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
102 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
103 |
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
104 |
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
105 |
|
106 |
+
# Determine sampling interval
|
107 |
if video_option == "Original FPS":
|
108 |
sample_interval = 1
|
109 |
output_fps = orig_fps
|
|
|
126 |
success, image = vidcap.read()
|
127 |
while success:
|
128 |
if frame_count % sample_interval == 0:
|
129 |
+
# Run detection
|
130 |
res = model.predict(image, conf=confidence)
|
131 |
res_plotted = res[0].plot()[:, :, ::-1]
|
132 |
+
|
133 |
processed_frames.append(res_plotted)
|
134 |
+
# If you want to store bounding boxes for each frame:
|
135 |
+
frame_detections.append(res[0].boxes)
|
136 |
|
137 |
+
# Update progress
|
138 |
if total_frames > 0:
|
139 |
progress_pct = int((frame_count / total_frames) * 100)
|
140 |
progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
|
|
|
142 |
else:
|
143 |
progress_text.text(f"Processing frame {frame_count}")
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
frame_count += 1
|
146 |
success, image = vidcap.read()
|
147 |
|
148 |
+
# Processing complete
|
149 |
progress_text.text("Video processing complete!")
|
150 |
progress_bar.progress(100)
|
151 |
|
152 |
+
# Create shortened video from processed frames
|
153 |
if processed_frames:
|
154 |
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
155 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
|
166 |
file_name="shortened_video.mp4",
|
167 |
mime="video/mp4"
|
168 |
)
|
169 |
+
|
170 |
else:
|
171 |
st.error("No frames were processed from the video.")
|
172 |
+
|
173 |
+
# --- DISPLAY THE PROCESSED FRAMES AFTER DETECTION ---
|
174 |
+
if st.session_state["processed_frames"]:
|
175 |
+
st.markdown("### Browse Detected Frames")
|
176 |
+
num_frames = len(st.session_state["processed_frames"])
|
177 |
+
|
178 |
+
if num_frames == 1:
|
179 |
+
# Only one frame was processed
|
180 |
+
st.image(st.session_state["processed_frames"][0], caption="Frame 0", use_column_width=True)
|
181 |
+
# If you want to show bounding boxes:
|
182 |
+
if st.session_state["frame_detections"]:
|
183 |
+
with st.expander("Detection Results for Frame 0"):
|
184 |
+
for box in st.session_state["frame_detections"][0]:
|
185 |
+
st.write(box.xywh)
|
186 |
+
else:
|
187 |
+
# Multiple frames
|
188 |
+
frame_idx = st.slider(
|
189 |
+
"Select Frame",
|
190 |
+
min_value=0,
|
191 |
+
max_value=num_frames - 1,
|
192 |
+
value=0,
|
193 |
+
step=1
|
194 |
+
)
|
195 |
+
st.image(st.session_state["processed_frames"][frame_idx],
|
196 |
+
caption=f"Frame {frame_idx}",
|
197 |
+
use_column_width=True)
|
198 |
+
# If you want to show bounding boxes:
|
199 |
+
if st.session_state["frame_detections"]:
|
200 |
+
with st.expander(f"Detection Results for Frame {frame_idx}"):
|
201 |
+
for box in st.session_state["frame_detections"][frame_idx]:
|
202 |
+
st.write(box.xywh)
|