Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,11 @@ import streamlit as st
|
|
5 |
import PIL
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
-
# Required libraries:
|
|
|
|
|
|
|
|
|
9 |
|
10 |
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
|
11 |
|
@@ -18,14 +22,14 @@ st.set_page_config(
|
|
18 |
|
19 |
with st.sidebar:
|
20 |
st.header("IMAGE/VIDEO UPLOAD")
|
21 |
-
source_file = st.file_uploader("Choose an image or video...",
|
22 |
-
type=("jpg", "jpeg", "png", "bmp", "webp", "mp4"))
|
23 |
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
24 |
video_option = st.selectbox("Select Video Shortening Option",
|
25 |
["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"])
|
26 |
progress_text = st.empty()
|
27 |
progress_bar = st.progress(0)
|
28 |
-
|
|
|
29 |
|
30 |
st.title("WildfireWatch: Detecting Wildfire using AI")
|
31 |
col1, col2 = st.columns(2)
|
@@ -35,11 +39,13 @@ with col2:
|
|
35 |
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
|
36 |
|
37 |
st.markdown("""
|
38 |
-
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas. Early detection is critical.
|
|
|
39 |
""")
|
40 |
st.markdown("---")
|
41 |
st.header("Fire Detection:")
|
42 |
|
|
|
43 |
col1, col2 = st.columns(2)
|
44 |
if source_file:
|
45 |
if source_file.type.split('/')[0] == 'image':
|
@@ -52,22 +58,30 @@ if source_file:
|
|
52 |
else:
|
53 |
st.info("Please upload an image or video file to begin.")
|
54 |
|
|
|
55 |
try:
|
56 |
model = YOLO(model_path)
|
57 |
except Exception as ex:
|
58 |
st.error(f"Unable to load model. Check the specified path: {model_path}")
|
59 |
st.error(ex)
|
60 |
|
61 |
-
|
|
|
|
|
62 |
|
63 |
-
#
|
64 |
if "slider_value" not in st.session_state:
|
65 |
-
st.session_state
|
66 |
|
|
|
|
|
|
|
|
|
67 |
if st.sidebar.button("Let's Detect Wildfire"):
|
68 |
if not source_file:
|
69 |
st.warning("No file uploaded!")
|
70 |
elif source_file.type.split('/')[0] == 'image':
|
|
|
71 |
res = model.predict(uploaded_image, conf=confidence)
|
72 |
boxes = res[0].boxes
|
73 |
res_plotted = res[0].plot()[:, :, ::-1]
|
@@ -77,8 +91,11 @@ if st.sidebar.button("Let's Detect Wildfire"):
|
|
77 |
for box in boxes:
|
78 |
st.write(box.xywh)
|
79 |
else:
|
80 |
-
|
|
|
81 |
frame_count = 0
|
|
|
|
|
82 |
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
83 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
84 |
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
@@ -109,7 +126,9 @@ if st.sidebar.button("Let's Detect Wildfire"):
|
|
109 |
res = model.predict(image, conf=confidence)
|
110 |
res_plotted = res[0].plot()[:, :, ::-1]
|
111 |
processed_frames.append(res_plotted)
|
|
|
112 |
|
|
|
113 |
if total_frames > 0:
|
114 |
progress_pct = int((frame_count / total_frames) * 100)
|
115 |
progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
|
@@ -117,30 +136,44 @@ if st.sidebar.button("Let's Detect Wildfire"):
|
|
117 |
else:
|
118 |
progress_text.text(f"Processing frame {frame_count}")
|
119 |
|
120 |
-
#
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
frame_count += 1
|
139 |
success, image = vidcap.read()
|
140 |
|
141 |
progress_text.text("Video processing complete!")
|
142 |
progress_bar.progress(100)
|
143 |
|
|
|
144 |
if processed_frames:
|
145 |
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
146 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
|
5 |
import PIL
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
+
# Required libraries:
|
9 |
+
# streamlit
|
10 |
+
# opencv-python-headless
|
11 |
+
# ultralytics
|
12 |
+
# Pillow
|
13 |
|
14 |
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
|
15 |
|
|
|
22 |
|
23 |
with st.sidebar:
|
24 |
st.header("IMAGE/VIDEO UPLOAD")
|
25 |
+
source_file = st.file_uploader("Choose an image or video...", type=("jpg", "jpeg", "png", "bmp", "webp", "mp4"))
|
|
|
26 |
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
|
27 |
video_option = st.selectbox("Select Video Shortening Option",
|
28 |
["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"])
|
29 |
progress_text = st.empty()
|
30 |
progress_bar = st.progress(0)
|
31 |
+
# A container where our dynamic slider (frame viewer) will be placed.
|
32 |
+
slider_container = st.empty()
|
33 |
|
34 |
st.title("WildfireWatch: Detecting Wildfire using AI")
|
35 |
col1, col2 = st.columns(2)
|
|
|
39 |
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
|
40 |
|
41 |
st.markdown("""
|
42 |
+
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas. Early detection is critical.
|
43 |
+
WildfireWatch leverages YOLOv8 for real‐time fire and smoke detection in images and videos.
|
44 |
""")
|
45 |
st.markdown("---")
|
46 |
st.header("Fire Detection:")
|
47 |
|
48 |
+
# Left column for the uploaded file, right for detection results.
|
49 |
col1, col2 = st.columns(2)
|
50 |
if source_file:
|
51 |
if source_file.type.split('/')[0] == 'image':
|
|
|
58 |
else:
|
59 |
st.info("Please upload an image or video file to begin.")
|
60 |
|
61 |
+
# Attempt to load the model.
|
62 |
try:
|
63 |
model = YOLO(model_path)
|
64 |
except Exception as ex:
|
65 |
st.error(f"Unable to load model. Check the specified path: {model_path}")
|
66 |
st.error(ex)
|
67 |
|
68 |
+
# We'll store processed frames persistently in session_state.
|
69 |
+
if "processed_frames" not in st.session_state:
|
70 |
+
st.session_state["processed_frames"] = []
|
71 |
|
72 |
+
# Also store the last slider value (if the user manually changes it).
|
73 |
if "slider_value" not in st.session_state:
|
74 |
+
st.session_state["slider_value"] = 0
|
75 |
|
76 |
+
# Container to display the currently viewed frame.
|
77 |
+
viewer_slot = st.empty()
|
78 |
+
|
79 |
+
# --- Processing and Viewer Update ---
|
80 |
if st.sidebar.button("Let's Detect Wildfire"):
|
81 |
if not source_file:
|
82 |
st.warning("No file uploaded!")
|
83 |
elif source_file.type.split('/')[0] == 'image':
|
84 |
+
# Process image input.
|
85 |
res = model.predict(uploaded_image, conf=confidence)
|
86 |
boxes = res[0].boxes
|
87 |
res_plotted = res[0].plot()[:, :, ::-1]
|
|
|
91 |
for box in boxes:
|
92 |
st.write(box.xywh)
|
93 |
else:
|
94 |
+
# For video input, process frames.
|
95 |
+
processed_frames = st.session_state["processed_frames"]
|
96 |
frame_count = 0
|
97 |
+
|
98 |
+
# Video properties.
|
99 |
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
|
100 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
101 |
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
126 |
res = model.predict(image, conf=confidence)
|
127 |
res_plotted = res[0].plot()[:, :, ::-1]
|
128 |
processed_frames.append(res_plotted)
|
129 |
+
st.session_state["processed_frames"] = processed_frames
|
130 |
|
131 |
+
# Update progress info.
|
132 |
if total_frames > 0:
|
133 |
progress_pct = int((frame_count / total_frames) * 100)
|
134 |
progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
|
|
|
136 |
else:
|
137 |
progress_text.text(f"Processing frame {frame_count}")
|
138 |
|
139 |
+
# --- Update the frame viewer slider dynamically ---
|
140 |
+
# Retrieve user's last slider selection.
|
141 |
+
last_slider = st.session_state.slider_value
|
142 |
+
# If the user was at the end, default to the new end.
|
143 |
+
if last_slider >= len(processed_frames):
|
144 |
+
default_val = len(processed_frames) - 1
|
145 |
+
else:
|
146 |
+
default_val = last_slider
|
147 |
+
|
148 |
+
# Clear the slider container and recreate the slider.
|
149 |
+
slider_container.empty()
|
150 |
+
# Use a dynamic key to avoid duplicate key errors.
|
151 |
+
slider_key = f"frame_slider_{len(processed_frames)}"
|
152 |
+
slider_val = slider_container.slider("Frame Viewer",
|
153 |
+
min_value=0,
|
154 |
+
max_value=len(processed_frames) - 1,
|
155 |
+
value=default_val,
|
156 |
+
step=1,
|
157 |
+
key=slider_key)
|
158 |
+
st.session_state.slider_value = slider_val
|
159 |
+
|
160 |
+
# If the slider is at the most recent frame, update the viewer.
|
161 |
+
if slider_val == len(processed_frames) - 1:
|
162 |
+
viewer_slot.image(processed_frames[-1],
|
163 |
+
caption=f"Frame {len(processed_frames) - 1}",
|
164 |
+
use_column_width=True)
|
165 |
+
else:
|
166 |
+
# Otherwise, show the frame corresponding to the slider.
|
167 |
+
viewer_slot.image(processed_frames[slider_val],
|
168 |
+
caption=f"Frame {slider_val}",
|
169 |
+
use_column_width=True)
|
170 |
frame_count += 1
|
171 |
success, image = vidcap.read()
|
172 |
|
173 |
progress_text.text("Video processing complete!")
|
174 |
progress_bar.progress(100)
|
175 |
|
176 |
+
# --- Video Download Section ---
|
177 |
if processed_frames:
|
178 |
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
179 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|