File size: 30,875 Bytes
51c53aa
 
eee7a65
622d3ee
35e1586
51c53aa
 
 
 
4d9cbac
66387cc
 
471ab30
66387cc
95a7e5a
 
 
35e1586
9b2f654
 
31bad44
35e1586
51c53aa
 
 
35e1586
51c53aa
eee7a65
 
2d991dc
51c53aa
6e0f0b6
51c53aa
1dbb3fe
caf6178
ce93ad2
95a7e5a
 
 
 
 
 
 
 
31bad44
 
554b5f1
95a7e5a
 
26493ce
95a7e5a
504482b
4d9cbac
 
e1033ec
504482b
 
 
26493ce
e1033ec
504482b
 
 
 
 
 
31bad44
eee7a65
31bad44
 
 
 
 
3b1c99a
31bad44
 
 
f377404
 
ae8a4eb
31bad44
51c53aa
31bad44
 
 
 
51c53aa
 
31bad44
 
 
eee7a65
31bad44
 
3938ff0
 
31bad44
eee7a65
3b1c99a
31bad44
eee7a65
 
134d152
7becdb7
9b2f654
b2bdaba
51c53aa
b2bdaba
51c53aa
9b2f654
134d152
 
51c53aa
1dbb3fe
 
 
 
 
 
 
ea7cf68
1dbb3fe
 
 
 
 
 
ea7cf68
1dbb3fe
f377404
2d991dc
7becdb7
9b2f654
622d3ee
 
 
ea7cf68
622d3ee
 
d862e2d
66387cc
ea7cf68
66387cc
 
 
 
 
 
 
d862e2d
 
 
ea7cf68
d862e2d
 
 
 
 
66387cc
 
 
1dbb3fe
8473822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7cf68
8473822
 
 
 
 
9037da0
 
 
8473822
e55fab5
 
ea7cf68
e55fab5
 
 
ea7cf68
e55fab5
 
 
cb1deeb
 
e55fab5
31bad44
 
 
 
 
 
 
ea7cf68
31bad44
 
 
 
 
 
 
88b8fb2
ae8a4eb
14a2032
88b8fb2
51c53aa
18fb072
ab03b3c
51c53aa
 
f377404
 
51c53aa
 
f377404
 
 
 
 
 
 
e1033ec
66387cc
d862e2d
66387cc
 
 
d862e2d
 
 
66387cc
d862e2d
66387cc
d862e2d
66387cc
 
4d9cbac
 
 
 
 
 
 
 
 
 
 
 
51c53aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d862e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9866ed8
ea7cf68
9866ed8
ea7cf68
 
9866ed8
089f890
9866ed8
 
 
 
 
 
 
 
 
ea7cf68
 
 
ee1566b
9b08b8e
f377404
51c53aa
9b08b8e
51c53aa
 
9b08b8e
 
 
51c53aa
f377404
 
51c53aa
31bad44
e4e087d
6e0f0b6
e4e087d
 
 
 
 
6e0f0b6
e4e087d
 
6e8f9d4
e4e087d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b8fb2
9b08b8e
 
 
 
 
 
 
 
 
 
51c53aa
9b08b8e
 
 
 
 
 
 
 
 
 
 
 
51c53aa
9b08b8e
 
462ad54
f9e3554
 
 
9b08b8e
 
 
e4e087d
9b08b8e
e4e087d
9b08b8e
e4e087d
9b08b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b8fb2
 
 
ea7cf68
88b8fb2
 
 
 
 
 
 
 
 
e1033ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3938ff0
 
 
 
 
bb786c1
996ea9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc5539d
daacd5c
ad1a600
daacd5c
95a7e5a
 
31bad44
f377404
 
 
 
 
 
95a7e5a
35e1586
1d687a8
996ea9d
3938ff0
1f4732b
 
 
996ea9d
 
 
 
 
 
1f4732b
 
 
 
996ea9d
 
 
 
1f4732b
996ea9d
 
 
 
 
 
1f4732b
996ea9d
 
1f4732b
996ea9d
 
 
 
1f4732b
996ea9d
 
3938ff0
 
ad1a600
3938ff0
504482b
 
eee7a65
504482b
e4e087d
e1033ec
9b08b8e
 
748e78e
e4e087d
6c38ae6
9b08b8e
e4e087d
9b08b8e
6c38ae6
9b08b8e
 
 
e4e087d
 
 
 
 
12bd822
9b08b8e
 
12bd822
 
9b08b8e
12bd822
9b08b8e
 
6c38ae6
9b08b8e
6c38ae6
9b08b8e
6c38ae6
 
9b08b8e
 
 
e4e087d
9b08b8e
 
504482b
 
f377404
504482b
 
ea7cf68
c883301
e1033ec
ea7cf68
c883301
 
 
 
6c38ae6
e1033ec
c883301
 
51eb727
4d9cbac
e7b63de
 
c883301
 
e7b63de
 
c883301
 
267e23d
aef29ef
6c38ae6
c883301
aef29ef
6c38ae6
 
aef29ef
c883301
aef29ef
 
1616205
aef29ef
c883301
 
 
 
 
 
504482b
 
 
28f8ba5
e1033ec
28f8ba5
 
 
3f00af2
e1033ec
28f8ba5
 
 
66387cc
3f00af2
e1033ec
28f8ba5
 
d862e2d
3aad967
d862e2d
a4347c5
ea7cf68
 
98cab35
aef29ef
a4347c5
aef29ef
a4347c5
 
 
 
 
28f8ba5
 
eee7a65
28f8ba5
 
ea7cf68
a4347c5
31bad44
f377404
31bad44
95a7e5a
f1db6fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
import transformers
import pickle
import os
import re
import numpy as np
import torchvision
import nltk
import torch
import pandas as pd
import requests
import zipfile
import tempfile
from openai import OpenAI
from PyPDF2 import PdfReader
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
    AutoModelForTokenClassification,
    AutoModelForCausalLM,
    pipeline, 
    Qwen2Tokenizer, 
    BartForConditionalGeneration
)
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file 
from typing import List, Dict, Optional
from safetensors.numpy import load_file
from safetensors.torch import safe_open
nltk.download('punkt_tab')

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)
models = {}
data = {}

class QueryRequest(BaseModel):
    query: str
    language_code: int = 1

class MedicalProfile(BaseModel):
    conditions: str
    daily_symptoms: str
    count: int

class ChatQuery(BaseModel):
    query: str
    language_code: int = 1
    #conversation_id: str

class ChatMessage(BaseModel):
    role: str
    content: str
    timestamp: str

def init_nltk():
    try:
        nltk.download('punkt', quiet=True)
        return True
    except Exception as e:
        print(f"Error initializing NLTK: {e}")
        return False

def load_models():
    try:
        print("Loading models...")
        device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Device set to use {device}")
        models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
        models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
        models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2')
        models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
        models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
        models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base")
        models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
        models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
        models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
        models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
        model_name = "M4-ai/Orca-2.0-Tau-1.8B"
        models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
        models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
        models['gen_tokenizer'] = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct")
        models['gen_model'] = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct")
        print("Models loaded successfully")
        return True
    except Exception as e:
        print(f"Error loading models: {e}")
        return False

def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
    try:
        embeddings_path = 'embeddings.safetensors'
        if not os.path.exists(embeddings_path):
            print("File not found locally. Attempting to download from Hugging Face Hub...")
            embeddings_path = hf_hub_download(
                repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
                filename="embeddings.safetensors",
                repo_type="space"
            )
        
        embeddings = {}
        with safe_open(embeddings_path, framework="pt") as f:
            keys = f.keys()
            for key in keys:
                try:
                    tensor = f.get_tensor(key)
                    if not isinstance(tensor, torch.Tensor):
                        raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.")                 
                    embeddings[key] = tensor.numpy()
                except Exception as key_error:
                    print(f"Failed to process key {key}: {key_error}")
        if embeddings:
            print("Embeddings successfully loaded.")
        else:
            print("No embeddings could be loaded. Please check the file format and content.")        
        return embeddings
    except Exception as e:
        print(f"Error loading embeddings: {e}")
        return None

def normalize_key(key: str) -> str:
    match = re.search(r'file_(\d+)', key)
    if match:
        return match.group(1)  
    return key

def load_recipes_embeddings() -> Optional[np.ndarray]:
    try:
        embeddings_path = 'recipes_embeddings.safetensors'        
        if not os.path.exists(embeddings_path):
            print("File not found locally. Attempting to download from Hugging Face Hub...")
            embeddings_path = hf_hub_download(
                repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
                filename="embeddings.safetensors",
                repo_type="space"
            )
        embeddings = load_file(embeddings_path)
        if "embeddings" not in embeddings:
            raise ValueError("Key 'embeddings' not found in the safetensors file.")
        tensor = embeddings["embeddings"]      
        print(f"Successfully loaded embeddings.")
        print(f"Shape of embeddings: {tensor.shape}")
        print(f"Dtype of embeddings: {tensor.dtype}")
        print(f"First few values of the first embedding: {tensor[0][:5]}")
        return tensor
    except Exception as e:
        print(f"Error loading embeddings: {e}")
        return None

def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
    try:
        print("Loading documents data...")
        if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
            print(f"Error: Folder '{folder_path}' not found")
            return False
        html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
        if not html_files:
            print(f"No HTML files found in folder '{folder_path}'")
            return False
        documents = []
        for file_name in html_files:
            file_path = os.path.join(folder_path, file_name)
            try:
                with open(file_path, 'r', encoding='utf-8') as file:
                    soup = BeautifulSoup(file, 'html.parser')
                    text = soup.get_text(separator='\n').strip()
                    documents.append({"file_name": file_name, "content": text})
            except Exception as e:
                print(f"Error reading file {file_name}: {e}")
            data['df'] = pd.DataFrame(documents)        
            if data['df'].empty:
                print("No valid documents loaded.")
                return False
            print(f"Successfully loaded {len(data['df'])} document records.")
            return True
    except Exception as e:
        print(f"Error loading docs: {e}")
        return None    

def load_data():
    embeddings_success = load_embeddings()
    documents_success = load_documents_data()    
    if not embeddings_success:
        print("Warning: Failed to load embeddings, falling back to basic functionality")
    if not documents_success:
        print("Warning: Failed to load documents data, falling back to basic functionality")       
    return True

print("Initializing application...")
init_success = load_models() and load_data()


def translate_text(text, source_to_target='ar_to_en'):
    try:
        if source_to_target == 'ar_to_en':
            tokenizer = models['ar_to_en_tokenizer']
            model = models['ar_to_en_model']
        else:
            tokenizer = models['en_to_ar_tokenizer']
            model = models['en_to_ar_model']            
        inputs = tokenizer(text, return_tensors="pt", truncation=True)
        outputs = model.generate(**inputs)
        return tokenizer.decode(outputs[0], skip_special_tokens=True)
    except Exception as e:
        print(f"Translation error: {e}")
        return text

def embed_query_text(query_text):
    embedding = models['embedding_model']
    query_embedding = embedding.encode([query_text])
    return query_embedding

def query_embeddings(query_embedding, embeddings_data, n_results):
    embeddings_data = load_embeddings()
    if not embeddings_data:
        print("No embeddings data available.")
        return []
    try:
        doc_ids = list(embeddings_data.keys())
        doc_embeddings = np.array(list(embeddings_data.values()))
        similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
        top_indices = similarities.argsort()[-n_results:][::-1]
        return [(doc_ids[i], similarities[i]) for i in top_indices]
    except Exception as e:
        print(f"Error in query_embeddings: {e}")
        return []

def query_recipes_embeddings(query_embedding, embeddings_data, n_results):
    embeddings_data = load_recipes_embeddings()
    if embeddings_data is None:
        print("No embeddings data available.")
        return []
    try:
        if query_embedding.ndim == 1:
            query_embedding = query_embedding.reshape(1, -1)
        similarities = cosine_similarity(query_embedding, embeddings_data).flatten()
        top_indices = similarities.argsort()[-n_results:][::-1]
        return [(index, similarities[index]) for index in top_indices]
    except Exception as e:
        print(f"Error in query_recipes_embeddings: {e}")
        return []

def get_page_title(url):
    try:
        response = requests.get(url)
        if response.status_code == 200:
            soup = BeautifulSoup(response.text, 'html.parser')
            title = soup.find('title')
            return title.get_text() if title else "No title found"
        else:
            return None
    except requests.exceptions.RequestException:
        return None

def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'):
    texts = []
    for doc_id in doc_ids:
        file_path = os.path.join(folder_path, doc_id)
        try:
            if not os.path.exists(file_path):
                print(f"Warning: Document file not found: {file_path}")
                texts.append("")
                continue
            with open(file_path, 'r', encoding='utf-8') as file:
                soup = BeautifulSoup(file, 'html.parser')
                text = soup.get_text(separator=' ', strip=True)
                texts.append(text)
        except Exception as e:
            print(f"Error retrieving document {doc_id}: {e}")
            texts.append("")
    return texts

def retrieve_rec_texts(
    document_indices, 
    folder_path='downloaded_articles/downloaded_articles', 
    metadata_path='recipes_metadata.xlsx'
):
    try:
        metadata_df = pd.read_excel(metadata_path)
        if "id" not in metadata_df.columns or "original_file_name" not in metadata_df.columns:
            raise ValueError("Metadata file must contain 'id' and 'original_file_name' columns.")
        metadata_df = metadata_df.sort_values(by="id").reset_index(drop=True)
        if metadata_df.index.max() < max(document_indices):
            raise ValueError("Some document indices exceed the range of metadata.")
        document_texts = []
        for idx in document_indices:
            if idx >= len(metadata_df):
                print(f"Warning: Index {idx} is out of range for metadata.")
                continue
            original_file_name = metadata_df.iloc[idx]["original_file_name"]
            if not original_file_name:
                print(f"Warning: No file name found for index {idx}")
                continue
            file_path = os.path.join(folder_path, original_file_name)
            if os.path.exists(file_path):
                with open(file_path, "r", encoding="utf-8") as f:
                    document_texts.append(f.read())
            else:
                print(f"Warning: File not found at {file_path}")
        return document_texts
    except Exception as e:
        print(f"Error in retrieve_rec_texts: {e}")
        return []

def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes_metadata.xlsx') -> Dict[int, Dict[str, str]]:
    try:
        metadata_df = pd.read_excel(metadata_path)
        required_columns = {'id', 'original_file_name', 'url'}
        if not required_columns.issubset(metadata_df.columns):
            raise ValueError(f"Metadata file must contain columns: {required_columns}")
        metadata_df['id'] = metadata_df['id'].astype(int)  
        filtered_metadata = metadata_df[metadata_df['id'].isin(document_indices)]
        metadata_dict = {
            int(row['id']): {
                "original_file_name": row['original_file_name'],
                "url": row['url']
            }
            for _, row in filtered_metadata.iterrows()
        }
        return metadata_dict
    except Exception as e:
        print(f"Error retrieving metadata: {e}")
        return {}

def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
    try:
        pairs = [(query, doc) for doc in document_texts]
        scores = cross_encoder_model.predict(pairs)
        scored_documents = list(zip(scores, document_ids, document_texts))
        scored_documents.sort(key=lambda x: x[0], reverse=True)
        print("Reranked results:")
        for idx, (score, doc_id, doc) in enumerate(scored_documents):
            print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})")
        return scored_documents
    except Exception as e:
        print(f"Error reranking documents: {e}")
        return []

def extract_entities(text, ner_pipeline=None):
    try:
        if ner_pipeline is None:
            ner_pipeline = models['ner_pipeline']
        ner_results = ner_pipeline(text)
        entities = {result['word'] for result in ner_results if result['entity'].startswith("B-")}
        return list(entities)
    except Exception as e:
        print(f"Error extracting entities: {e}")
        return []

def match_entities(query_entities, sentence_entities):
    try:
        query_set, sentence_set = set(query_entities), set(sentence_entities)
        matches = query_set.intersection(sentence_set)
        return len(matches)
    except Exception as e:
        print(f"Error matching entities: {e}")
        return 0

def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=2):
    relevant_portions = {}
    query_entities = extract_entities(query)
    print(f"Extracted Query Entities: {query_entities}")
    for doc_id, doc_text in enumerate(document_texts):
        sentences = nltk.sent_tokenize(doc_text)  
        doc_relevant_portions = []
        doc_entities = extract_entities(doc_text)
        print(f"Document {doc_id} Entities: {doc_entities}")
        for i, sentence in enumerate(sentences):
            sentence_entities = extract_entities(sentence)
            relevance_score = match_entities(query_entities, sentence_entities)
            if relevance_score >= min_query_words:
                start_idx = max(0, i - portion_size // 2)
                end_idx = min(len(sentences), i + portion_size // 2 + 1)
                portion = " ".join(sentences[start_idx:end_idx])
                doc_relevant_portions.append(portion)
            if len(doc_relevant_portions) >= max_portions:
                break
        if not doc_relevant_portions and len(doc_entities) > 0:
            print(f"Fallback: Selecting sentences with most entities for Document {doc_id}")
            sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s, ner_biobert)), reverse=True)
            for fallback_sentence in sorted_sentences[:max_portions]:
                doc_relevant_portions.append(fallback_sentence)
        relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions
    return relevant_portions

def remove_duplicates(selected_parts):
    unique_sentences = set()
    unique_selected_parts = []
    for sentence in selected_parts:
        if sentence not in unique_sentences:
            unique_selected_parts.append(sentence)
            unique_sentences.add(sentence)
    return unique_selected_parts

def extract_entities(text):
    try:
        biobert_tokenizer = models['bio_tokenizer']
        biobert_model = models['bio_model']
        inputs = biobert_tokenizer(text, return_tensors="pt")
        outputs = biobert_model(**inputs)
        predictions = torch.argmax(outputs.logits, dim=2)
        tokens = biobert_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
        entities = [
            tokens[i] 
            for i in range(len(tokens)) 
            if predictions[0][i].item() != 0  # Assuming 0 is the label for non-entity
        ]
        return entities
    except Exception as e:
        print(f"Error extracting entities: {e}")
        return []

def enhance_passage_with_entities(passage, entities):
    return f"{passage}\n\nEntities: {', '.join(entities)}"

def create_prompt(question, passage):
    prompt = ("""
    As a medical expert, you are required to answer the following question based only on the provided passage. Do not include any information not present in the passage. Your response should directly reflect the content of the passage. Maintain accuracy and relevance to the provided information.

    Passage: {passage}

    Question: {question}

    Answer:
    """)
    return prompt.format(passage=passage, question=question)

def generate_answer(prompt, max_length=860, temperature=0.2):
    tokenizer_f = models['llm_tokenizer']
    model_f = models['llm_model']
    inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True)
    output_ids = model_f.generate(
        inputs.input_ids,
        max_length=max_length,
        num_return_sequences=1,
        temperature=temperature,
        pad_token_id=tokenizer_f.eos_token_id
    )
    answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
    passage_keywords = set(prompt.lower().split())  
    answer_keywords = set(answer.lower().split())
    if passage_keywords.intersection(answer_keywords):
        return answer  
    else:
        return "Sorry, I can't help with that." 
  
def remove_answer_prefix(text):
    prefix = "Answer:"
    if prefix in text:
        return text.split(prefix, 1)[-1].strip()  
    return text

def remove_incomplete_sentence(text):
    if not text.endswith('.'):
        last_period_index = text.rfind('.')
        if last_period_index != -1:
            return text[:last_period_index + 1].strip()
    return text

def translate_ar_to_en(text):
    try:
        ar_to_en_tokenizer = models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        ar_to_en_model= models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        inputs = ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        translated_ids = ar_to_en_model.generate(
            inputs.input_ids,
            max_length=512, 
            num_beams=4,     
            early_stopping=True
        )
        translated_text = ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
        return translated_text
    except Exception as e:
        print(f"Error during Arabic to English translation: {e}")
        return None
              
def translate_en_to_ar(text):
    try:
        en_to_ar_tokenizer = models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
        en_to_ar_model = models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")  
        inputs = en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        translated_ids = en_to_ar_model.generate(
            inputs.input_ids,
            max_length=512,  
            num_beams=4,     
            early_stopping=True
        )
        translated_text = en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
        return translated_text
    except Exception as e:
        print(f"Error during English to Arabic translation: {e}")
        return None






def get_completion(prompt: str, model: str = "sophosympatheia/rogue-rose-103b-v0.2:free") -> str:
    api_key = os.environ.get('OPENROUTER_API_KEY')
    if not api_key:
        raise HTTPException(status_code=500, detail="OPENROUTER_API_KEY not found in environment variables")
    
    client = OpenAI(
        base_url="https://openrouter.ai/api/v1",
        api_key=api_key
    )
    
    if not prompt.strip():
        raise HTTPException(status_code=400, detail="Please enter a question")
    
    try:
        completion = client.chat.completions.create(
            extra_headers={
                "HTTP-Referer": "https://huggingface.co/spaces/thechaiexperiment/phitrial",
                "X-Title": "My Hugging Face Space"
            },
            model=model,
            messages=[
                {
                    "role": "user",
                    "content": prompt
                }
            ]
        )
        
        if (completion and 
            hasattr(completion, 'choices') and 
            completion.choices and 
            hasattr(completion.choices[0], 'message') and 
            hasattr(completion.choices[0].message, 'content')):
            return completion.choices[0].message.content
        else:
            raise HTTPException(status_code=500, detail="Received invalid response from API")
            
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/")
async def root():
    return {"message": "Welcome to TeaRAG! Your Medical Assistant Powered by RAG"}

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    status = {
        'status': 'healthy',
        'models_loaded': bool(models),
        'embeddings_loaded': bool(data.get('embeddings')),
        'documents_loaded': not data.get('df', pd.DataFrame()).empty
    }
    return status

@app.post("/api/ask")
async def chat(query: ChatQuery):
    try:
        # Define constraints
        constraints = "Provide a medically reliable answer in no more than 250 words."

        # Handle Arabic input
        if query.language_code == 0:
            # Translate question from Arabic to English
            english_query = translate_ar_to_en(query.query)
            if not english_query:
                raise HTTPException(status_code=500, detail="Failed to translate question from Arabic to English")

            # Modify the prompt with constraints
            english_response = get_completion(f"{english_query} {constraints}")

            # Translate response back to Arabic
            arabic_response = translate_en_to_ar(english_response)
            if not arabic_response:
                raise HTTPException(status_code=500, detail="Failed to translate response to Arabic")

            return {
                "original_query": query.query,
                "translated_query": english_query,
                "response": arabic_response,
                "response_in_english": english_response
            }

        # Handle English input
        else:
            response = get_completion(f"{query.query} {constraints}")
            return {
                "query": query.query,
                "response": response
            }

    except HTTPException as e:
        raise e
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
  

@app.post("/api/chat")
async def chat_endpoint(chat_query: ChatQuery):
    try:
        query_text = chat_query.query
        language_code = chat_query.language_code        
        if language_code == 0:
            query_text = translate_ar_to_en(query_text)
        query_embedding = embed_query_text(query_text)
        n_results = 5
        embeddings_data = load_embeddings ()
        folder_path = 'downloaded_articles/downloaded_articles'
        initial_results = query_embeddings(query_embedding, embeddings_data, n_results)
        document_ids = [doc_id for doc_id, _ in initial_results]
        document_texts = retrieve_document_texts(document_ids, folder_path)
        cross_encoder = models['cross_encoder']
        scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
        scored_documents = list(zip(scores, document_ids, document_texts))
        scored_documents.sort(key=lambda x: x[0], reverse=True)
        relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=2)
        flattened_relevant_portions = []
        for doc_id, portions in relevant_portions.items():
            flattened_relevant_portions.extend(portions)
        unique_selected_parts = remove_duplicates(flattened_relevant_portions)
        combined_parts = " ".join(unique_selected_parts)
        context = [query_text] + unique_selected_parts
        entities = extract_entities(query_text)
        passage = enhance_passage_with_entities(combined_parts, entities)
        prompt = create_prompt(query_text, passage)
        answer = generate_answer(prompt)
        answer_part = answer.split("Answer:")[-1].strip()
        cleaned_answer = remove_answer_prefix(answer_part)
        final_answer = remove_incomplete_sentence(cleaned_answer)
        if language_code == 0:
            final_answer = translate_en_to_ar(final_answer)
        if final_answer:
            print("Answer:")
            print(final_answer)
        else:
            print("Sorry, I can't help with that.")
        return {
            "response": f"I hope this answers your question: {final_answer}",
            # "conversation_id": chat_query.conversation_id,
            "success": True
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/api/resources")
async def resources_endpoint(profile: MedicalProfile):
    try:       
        query_text = profile.conditions + " " + profile.daily_symptoms
        n_results = profile.count
        print(f"Generated query text: {query_text}")        
        query_embedding = embed_query_text(query_text)
        if query_embedding is None:
            raise ValueError("Failed to generate query embedding.")
        embeddings_data = load_embeddings()
        folder_path = 'downloaded_articles/downloaded_articles'
        initial_results = query_embeddings(query_embedding, embeddings_data, n_results)
        if not initial_results:
            raise ValueError("No relevant documents found.")
        document_ids = [doc_id for doc_id, _ in initial_results]
        file_path = 'finalcleaned_excel_file.xlsx'
        df = pd.read_excel(file_path)
        file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
        resources = []
        for file_name in document_ids:
            original_url = file_name_to_url.get(file_name, None)
            if original_url:
                title = get_page_title(original_url) or "Unknown Title"
                resources.append({"file_name": file_name, "title": title, "url": original_url})
            else:
                resources.append({"file_name": file_name, "title": "Unknown", "url": None})        
        document_texts = retrieve_document_texts(document_ids, folder_path)
        if not document_texts:
            raise ValueError("Failed to retrieve document texts.")        
        cross_encoder = models['cross_encoder']
        scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
        scores = [float(score) for score in scores]       
        for i, resource in enumerate(resources):
            resource["score"] = scores[i] if i < len(scores) else 0.0        
        resources.sort(key=lambda x: x["score"], reverse=True)       
        output = [{"title": resource["title"], "url": resource["url"]} for resource in resources]       
        return output
    except ValueError as ve:
        raise HTTPException(status_code=400, detail=str(ve))
    except Exception as e:
        print(f"Unexpected error: {e}")
        raise HTTPException(status_code=500, detail="An unexpected error occurred.")

@app.post("/api/recipes")
async def recipes_endpoint(profile: MedicalProfile):
    try:
        recipe_query = (
            f"Recipes and foods for: "
            f"{profile.conditions} and experiencing {profile.daily_symptoms}"
        )
        query_text = recipe_query
        print(f"Generated query text: {query_text}")
        n_results = profile.count
        query_embedding = embed_query_text(query_text)
        if query_embedding is None:
            raise ValueError("Failed to generate query embedding.")
        embeddings_data = load_recipes_embeddings()
        folder_path = 'downloaded_articles/downloaded_articles'
        initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results)
        if not initial_results:
            raise ValueError("No relevant recipes found.")
        print("Initial results (document indices and similarities):")
        print(initial_results)
        document_indices = [doc_id for doc_id, _ in initial_results]
        print("Document indices:", document_indices)
        metadata_path = 'recipes_metadata.xlsx'
        metadata = retrieve_metadata(document_indices, metadata_path=metadata_path)
        print(f"Retrieved Metadata: {metadata}")        
        recipes = []
        for item in metadata.values():
            recipes.append({
                "title": item["original_file_name"] if "original_file_name" in item else "Unknown Title",
                "url": item["url"] if "url" in item else ""
            })               
        print(recipes)
        return recipes
    except ValueError as ve:
        raise HTTPException(status_code=400, detail=str(ve))
    except Exception as e:
        print(f"Unexpected error: {e}")
        raise HTTPException(status_code=500, detail="An unexpected error occurred.")
      
      
if not init_success:
    print("Warning: Application initialized with partial functionality")
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)