Spaces:
Running
Running
File size: 30,875 Bytes
51c53aa eee7a65 622d3ee 35e1586 51c53aa 4d9cbac 66387cc 471ab30 66387cc 95a7e5a 35e1586 9b2f654 31bad44 35e1586 51c53aa 35e1586 51c53aa eee7a65 2d991dc 51c53aa 6e0f0b6 51c53aa 1dbb3fe caf6178 ce93ad2 95a7e5a 31bad44 554b5f1 95a7e5a 26493ce 95a7e5a 504482b 4d9cbac e1033ec 504482b 26493ce e1033ec 504482b 31bad44 eee7a65 31bad44 3b1c99a 31bad44 f377404 ae8a4eb 31bad44 51c53aa 31bad44 51c53aa 31bad44 eee7a65 31bad44 3938ff0 31bad44 eee7a65 3b1c99a 31bad44 eee7a65 134d152 7becdb7 9b2f654 b2bdaba 51c53aa b2bdaba 51c53aa 9b2f654 134d152 51c53aa 1dbb3fe ea7cf68 1dbb3fe ea7cf68 1dbb3fe f377404 2d991dc 7becdb7 9b2f654 622d3ee ea7cf68 622d3ee d862e2d 66387cc ea7cf68 66387cc d862e2d ea7cf68 d862e2d 66387cc 1dbb3fe 8473822 ea7cf68 8473822 9037da0 8473822 e55fab5 ea7cf68 e55fab5 ea7cf68 e55fab5 cb1deeb e55fab5 31bad44 ea7cf68 31bad44 88b8fb2 ae8a4eb 14a2032 88b8fb2 51c53aa 18fb072 ab03b3c 51c53aa f377404 51c53aa f377404 e1033ec 66387cc d862e2d 66387cc d862e2d 66387cc d862e2d 66387cc d862e2d 66387cc 4d9cbac 51c53aa d862e2d 9866ed8 ea7cf68 9866ed8 ea7cf68 9866ed8 089f890 9866ed8 ea7cf68 ee1566b 9b08b8e f377404 51c53aa 9b08b8e 51c53aa 9b08b8e 51c53aa f377404 51c53aa 31bad44 e4e087d 6e0f0b6 e4e087d 6e0f0b6 e4e087d 6e8f9d4 e4e087d 88b8fb2 9b08b8e 51c53aa 9b08b8e 51c53aa 9b08b8e 462ad54 f9e3554 9b08b8e e4e087d 9b08b8e e4e087d 9b08b8e e4e087d 9b08b8e 88b8fb2 ea7cf68 88b8fb2 e1033ec 3938ff0 bb786c1 996ea9d cc5539d daacd5c ad1a600 daacd5c 95a7e5a 31bad44 f377404 95a7e5a 35e1586 1d687a8 996ea9d 3938ff0 1f4732b 996ea9d 1f4732b 996ea9d 1f4732b 996ea9d 1f4732b 996ea9d 1f4732b 996ea9d 1f4732b 996ea9d 3938ff0 ad1a600 3938ff0 504482b eee7a65 504482b e4e087d e1033ec 9b08b8e 748e78e e4e087d 6c38ae6 9b08b8e e4e087d 9b08b8e 6c38ae6 9b08b8e e4e087d 12bd822 9b08b8e 12bd822 9b08b8e 12bd822 9b08b8e 6c38ae6 9b08b8e 6c38ae6 9b08b8e 6c38ae6 9b08b8e e4e087d 9b08b8e 504482b f377404 504482b ea7cf68 c883301 e1033ec ea7cf68 c883301 6c38ae6 e1033ec c883301 51eb727 4d9cbac e7b63de c883301 e7b63de c883301 267e23d aef29ef 6c38ae6 c883301 aef29ef 6c38ae6 aef29ef c883301 aef29ef 1616205 aef29ef c883301 504482b 28f8ba5 e1033ec 28f8ba5 3f00af2 e1033ec 28f8ba5 66387cc 3f00af2 e1033ec 28f8ba5 d862e2d 3aad967 d862e2d a4347c5 ea7cf68 98cab35 aef29ef a4347c5 aef29ef a4347c5 28f8ba5 eee7a65 28f8ba5 ea7cf68 a4347c5 31bad44 f377404 31bad44 95a7e5a f1db6fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
import transformers
import pickle
import os
import re
import numpy as np
import torchvision
import nltk
import torch
import pandas as pd
import requests
import zipfile
import tempfile
from openai import OpenAI
from PyPDF2 import PdfReader
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForTokenClassification,
AutoModelForCausalLM,
pipeline,
Qwen2Tokenizer,
BartForConditionalGeneration
)
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from typing import List, Dict, Optional
from safetensors.numpy import load_file
from safetensors.torch import safe_open
nltk.download('punkt_tab')
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
models = {}
data = {}
class QueryRequest(BaseModel):
query: str
language_code: int = 1
class MedicalProfile(BaseModel):
conditions: str
daily_symptoms: str
count: int
class ChatQuery(BaseModel):
query: str
language_code: int = 1
#conversation_id: str
class ChatMessage(BaseModel):
role: str
content: str
timestamp: str
def init_nltk():
try:
nltk.download('punkt', quiet=True)
return True
except Exception as e:
print(f"Error initializing NLTK: {e}")
return False
def load_models():
try:
print("Loading models...")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device set to use {device}")
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2')
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base")
models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
models['gen_tokenizer'] = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct")
models['gen_model'] = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct")
print("Models loaded successfully")
return True
except Exception as e:
print(f"Error loading models: {e}")
return False
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
try:
embeddings_path = 'embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
embeddings = {}
with safe_open(embeddings_path, framework="pt") as f:
keys = f.keys()
for key in keys:
try:
tensor = f.get_tensor(key)
if not isinstance(tensor, torch.Tensor):
raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.")
embeddings[key] = tensor.numpy()
except Exception as key_error:
print(f"Failed to process key {key}: {key_error}")
if embeddings:
print("Embeddings successfully loaded.")
else:
print("No embeddings could be loaded. Please check the file format and content.")
return embeddings
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def normalize_key(key: str) -> str:
match = re.search(r'file_(\d+)', key)
if match:
return match.group(1)
return key
def load_recipes_embeddings() -> Optional[np.ndarray]:
try:
embeddings_path = 'recipes_embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
embeddings = load_file(embeddings_path)
if "embeddings" not in embeddings:
raise ValueError("Key 'embeddings' not found in the safetensors file.")
tensor = embeddings["embeddings"]
print(f"Successfully loaded embeddings.")
print(f"Shape of embeddings: {tensor.shape}")
print(f"Dtype of embeddings: {tensor.dtype}")
print(f"First few values of the first embedding: {tensor[0][:5]}")
return tensor
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
try:
print("Loading documents data...")
if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
print(f"Error: Folder '{folder_path}' not found")
return False
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
if not html_files:
print(f"No HTML files found in folder '{folder_path}'")
return False
documents = []
for file_name in html_files:
file_path = os.path.join(folder_path, file_name)
try:
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator='\n').strip()
documents.append({"file_name": file_name, "content": text})
except Exception as e:
print(f"Error reading file {file_name}: {e}")
data['df'] = pd.DataFrame(documents)
if data['df'].empty:
print("No valid documents loaded.")
return False
print(f"Successfully loaded {len(data['df'])} document records.")
return True
except Exception as e:
print(f"Error loading docs: {e}")
return None
def load_data():
embeddings_success = load_embeddings()
documents_success = load_documents_data()
if not embeddings_success:
print("Warning: Failed to load embeddings, falling back to basic functionality")
if not documents_success:
print("Warning: Failed to load documents data, falling back to basic functionality")
return True
print("Initializing application...")
init_success = load_models() and load_data()
def translate_text(text, source_to_target='ar_to_en'):
try:
if source_to_target == 'ar_to_en':
tokenizer = models['ar_to_en_tokenizer']
model = models['ar_to_en_model']
else:
tokenizer = models['en_to_ar_tokenizer']
model = models['en_to_ar_model']
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Translation error: {e}")
return text
def embed_query_text(query_text):
embedding = models['embedding_model']
query_embedding = embedding.encode([query_text])
return query_embedding
def query_embeddings(query_embedding, embeddings_data, n_results):
embeddings_data = load_embeddings()
if not embeddings_data:
print("No embeddings data available.")
return []
try:
doc_ids = list(embeddings_data.keys())
doc_embeddings = np.array(list(embeddings_data.values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
except Exception as e:
print(f"Error in query_embeddings: {e}")
return []
def query_recipes_embeddings(query_embedding, embeddings_data, n_results):
embeddings_data = load_recipes_embeddings()
if embeddings_data is None:
print("No embeddings data available.")
return []
try:
if query_embedding.ndim == 1:
query_embedding = query_embedding.reshape(1, -1)
similarities = cosine_similarity(query_embedding, embeddings_data).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(index, similarities[index]) for index in top_indices]
except Exception as e:
print(f"Error in query_recipes_embeddings: {e}")
return []
def get_page_title(url):
try:
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.find('title')
return title.get_text() if title else "No title found"
else:
return None
except requests.exceptions.RequestException:
return None
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'):
texts = []
for doc_id in doc_ids:
file_path = os.path.join(folder_path, doc_id)
try:
if not os.path.exists(file_path):
print(f"Warning: Document file not found: {file_path}")
texts.append("")
continue
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator=' ', strip=True)
texts.append(text)
except Exception as e:
print(f"Error retrieving document {doc_id}: {e}")
texts.append("")
return texts
def retrieve_rec_texts(
document_indices,
folder_path='downloaded_articles/downloaded_articles',
metadata_path='recipes_metadata.xlsx'
):
try:
metadata_df = pd.read_excel(metadata_path)
if "id" not in metadata_df.columns or "original_file_name" not in metadata_df.columns:
raise ValueError("Metadata file must contain 'id' and 'original_file_name' columns.")
metadata_df = metadata_df.sort_values(by="id").reset_index(drop=True)
if metadata_df.index.max() < max(document_indices):
raise ValueError("Some document indices exceed the range of metadata.")
document_texts = []
for idx in document_indices:
if idx >= len(metadata_df):
print(f"Warning: Index {idx} is out of range for metadata.")
continue
original_file_name = metadata_df.iloc[idx]["original_file_name"]
if not original_file_name:
print(f"Warning: No file name found for index {idx}")
continue
file_path = os.path.join(folder_path, original_file_name)
if os.path.exists(file_path):
with open(file_path, "r", encoding="utf-8") as f:
document_texts.append(f.read())
else:
print(f"Warning: File not found at {file_path}")
return document_texts
except Exception as e:
print(f"Error in retrieve_rec_texts: {e}")
return []
def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes_metadata.xlsx') -> Dict[int, Dict[str, str]]:
try:
metadata_df = pd.read_excel(metadata_path)
required_columns = {'id', 'original_file_name', 'url'}
if not required_columns.issubset(metadata_df.columns):
raise ValueError(f"Metadata file must contain columns: {required_columns}")
metadata_df['id'] = metadata_df['id'].astype(int)
filtered_metadata = metadata_df[metadata_df['id'].isin(document_indices)]
metadata_dict = {
int(row['id']): {
"original_file_name": row['original_file_name'],
"url": row['url']
}
for _, row in filtered_metadata.iterrows()
}
return metadata_dict
except Exception as e:
print(f"Error retrieving metadata: {e}")
return {}
def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
try:
pairs = [(query, doc) for doc in document_texts]
scores = cross_encoder_model.predict(pairs)
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True)
print("Reranked results:")
for idx, (score, doc_id, doc) in enumerate(scored_documents):
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})")
return scored_documents
except Exception as e:
print(f"Error reranking documents: {e}")
return []
def extract_entities(text, ner_pipeline=None):
try:
if ner_pipeline is None:
ner_pipeline = models['ner_pipeline']
ner_results = ner_pipeline(text)
entities = {result['word'] for result in ner_results if result['entity'].startswith("B-")}
return list(entities)
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def match_entities(query_entities, sentence_entities):
try:
query_set, sentence_set = set(query_entities), set(sentence_entities)
matches = query_set.intersection(sentence_set)
return len(matches)
except Exception as e:
print(f"Error matching entities: {e}")
return 0
def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=2):
relevant_portions = {}
query_entities = extract_entities(query)
print(f"Extracted Query Entities: {query_entities}")
for doc_id, doc_text in enumerate(document_texts):
sentences = nltk.sent_tokenize(doc_text)
doc_relevant_portions = []
doc_entities = extract_entities(doc_text)
print(f"Document {doc_id} Entities: {doc_entities}")
for i, sentence in enumerate(sentences):
sentence_entities = extract_entities(sentence)
relevance_score = match_entities(query_entities, sentence_entities)
if relevance_score >= min_query_words:
start_idx = max(0, i - portion_size // 2)
end_idx = min(len(sentences), i + portion_size // 2 + 1)
portion = " ".join(sentences[start_idx:end_idx])
doc_relevant_portions.append(portion)
if len(doc_relevant_portions) >= max_portions:
break
if not doc_relevant_portions and len(doc_entities) > 0:
print(f"Fallback: Selecting sentences with most entities for Document {doc_id}")
sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s, ner_biobert)), reverse=True)
for fallback_sentence in sorted_sentences[:max_portions]:
doc_relevant_portions.append(fallback_sentence)
relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions
return relevant_portions
def remove_duplicates(selected_parts):
unique_sentences = set()
unique_selected_parts = []
for sentence in selected_parts:
if sentence not in unique_sentences:
unique_selected_parts.append(sentence)
unique_sentences.add(sentence)
return unique_selected_parts
def extract_entities(text):
try:
biobert_tokenizer = models['bio_tokenizer']
biobert_model = models['bio_model']
inputs = biobert_tokenizer(text, return_tensors="pt")
outputs = biobert_model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2)
tokens = biobert_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
entities = [
tokens[i]
for i in range(len(tokens))
if predictions[0][i].item() != 0 # Assuming 0 is the label for non-entity
]
return entities
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def enhance_passage_with_entities(passage, entities):
return f"{passage}\n\nEntities: {', '.join(entities)}"
def create_prompt(question, passage):
prompt = ("""
As a medical expert, you are required to answer the following question based only on the provided passage. Do not include any information not present in the passage. Your response should directly reflect the content of the passage. Maintain accuracy and relevance to the provided information.
Passage: {passage}
Question: {question}
Answer:
""")
return prompt.format(passage=passage, question=question)
def generate_answer(prompt, max_length=860, temperature=0.2):
tokenizer_f = models['llm_tokenizer']
model_f = models['llm_model']
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True)
output_ids = model_f.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
pad_token_id=tokenizer_f.eos_token_id
)
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
passage_keywords = set(prompt.lower().split())
answer_keywords = set(answer.lower().split())
if passage_keywords.intersection(answer_keywords):
return answer
else:
return "Sorry, I can't help with that."
def remove_answer_prefix(text):
prefix = "Answer:"
if prefix in text:
return text.split(prefix, 1)[-1].strip()
return text
def remove_incomplete_sentence(text):
if not text.endswith('.'):
last_period_index = text.rfind('.')
if last_period_index != -1:
return text[:last_period_index + 1].strip()
return text
def translate_ar_to_en(text):
try:
ar_to_en_tokenizer = models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
ar_to_en_model= models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
inputs = ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
translated_ids = ar_to_en_model.generate(
inputs.input_ids,
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
return translated_text
except Exception as e:
print(f"Error during Arabic to English translation: {e}")
return None
def translate_en_to_ar(text):
try:
en_to_ar_tokenizer = models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
en_to_ar_model = models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
inputs = en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
translated_ids = en_to_ar_model.generate(
inputs.input_ids,
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
return translated_text
except Exception as e:
print(f"Error during English to Arabic translation: {e}")
return None
def get_completion(prompt: str, model: str = "sophosympatheia/rogue-rose-103b-v0.2:free") -> str:
api_key = os.environ.get('OPENROUTER_API_KEY')
if not api_key:
raise HTTPException(status_code=500, detail="OPENROUTER_API_KEY not found in environment variables")
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key
)
if not prompt.strip():
raise HTTPException(status_code=400, detail="Please enter a question")
try:
completion = client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://huggingface.co/spaces/thechaiexperiment/phitrial",
"X-Title": "My Hugging Face Space"
},
model=model,
messages=[
{
"role": "user",
"content": prompt
}
]
)
if (completion and
hasattr(completion, 'choices') and
completion.choices and
hasattr(completion.choices[0], 'message') and
hasattr(completion.choices[0].message, 'content')):
return completion.choices[0].message.content
else:
raise HTTPException(status_code=500, detail="Received invalid response from API")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Welcome to TeaRAG! Your Medical Assistant Powered by RAG"}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
status = {
'status': 'healthy',
'models_loaded': bool(models),
'embeddings_loaded': bool(data.get('embeddings')),
'documents_loaded': not data.get('df', pd.DataFrame()).empty
}
return status
@app.post("/api/ask")
async def chat(query: ChatQuery):
try:
# Define constraints
constraints = "Provide a medically reliable answer in no more than 250 words."
# Handle Arabic input
if query.language_code == 0:
# Translate question from Arabic to English
english_query = translate_ar_to_en(query.query)
if not english_query:
raise HTTPException(status_code=500, detail="Failed to translate question from Arabic to English")
# Modify the prompt with constraints
english_response = get_completion(f"{english_query} {constraints}")
# Translate response back to Arabic
arabic_response = translate_en_to_ar(english_response)
if not arabic_response:
raise HTTPException(status_code=500, detail="Failed to translate response to Arabic")
return {
"original_query": query.query,
"translated_query": english_query,
"response": arabic_response,
"response_in_english": english_response
}
# Handle English input
else:
response = get_completion(f"{query.query} {constraints}")
return {
"query": query.query,
"response": response
}
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/chat")
async def chat_endpoint(chat_query: ChatQuery):
try:
query_text = chat_query.query
language_code = chat_query.language_code
if language_code == 0:
query_text = translate_ar_to_en(query_text)
query_embedding = embed_query_text(query_text)
n_results = 5
embeddings_data = load_embeddings ()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results)
document_ids = [doc_id for doc_id, _ in initial_results]
document_texts = retrieve_document_texts(document_ids, folder_path)
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True)
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=2)
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
combined_parts = " ".join(unique_selected_parts)
context = [query_text] + unique_selected_parts
entities = extract_entities(query_text)
passage = enhance_passage_with_entities(combined_parts, entities)
prompt = create_prompt(query_text, passage)
answer = generate_answer(prompt)
answer_part = answer.split("Answer:")[-1].strip()
cleaned_answer = remove_answer_prefix(answer_part)
final_answer = remove_incomplete_sentence(cleaned_answer)
if language_code == 0:
final_answer = translate_en_to_ar(final_answer)
if final_answer:
print("Answer:")
print(final_answer)
else:
print("Sorry, I can't help with that.")
return {
"response": f"I hope this answers your question: {final_answer}",
# "conversation_id": chat_query.conversation_id,
"success": True
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/resources")
async def resources_endpoint(profile: MedicalProfile):
try:
query_text = profile.conditions + " " + profile.daily_symptoms
n_results = profile.count
print(f"Generated query text: {query_text}")
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
embeddings_data = load_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results)
if not initial_results:
raise ValueError("No relevant documents found.")
document_ids = [doc_id for doc_id, _ in initial_results]
file_path = 'finalcleaned_excel_file.xlsx'
df = pd.read_excel(file_path)
file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
resources = []
for file_name in document_ids:
original_url = file_name_to_url.get(file_name, None)
if original_url:
title = get_page_title(original_url) or "Unknown Title"
resources.append({"file_name": file_name, "title": title, "url": original_url})
else:
resources.append({"file_name": file_name, "title": "Unknown", "url": None})
document_texts = retrieve_document_texts(document_ids, folder_path)
if not document_texts:
raise ValueError("Failed to retrieve document texts.")
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scores = [float(score) for score in scores]
for i, resource in enumerate(resources):
resource["score"] = scores[i] if i < len(scores) else 0.0
resources.sort(key=lambda x: x["score"], reverse=True)
output = [{"title": resource["title"], "url": resource["url"]} for resource in resources]
return output
except ValueError as ve:
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.post("/api/recipes")
async def recipes_endpoint(profile: MedicalProfile):
try:
recipe_query = (
f"Recipes and foods for: "
f"{profile.conditions} and experiencing {profile.daily_symptoms}"
)
query_text = recipe_query
print(f"Generated query text: {query_text}")
n_results = profile.count
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
embeddings_data = load_recipes_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results)
if not initial_results:
raise ValueError("No relevant recipes found.")
print("Initial results (document indices and similarities):")
print(initial_results)
document_indices = [doc_id for doc_id, _ in initial_results]
print("Document indices:", document_indices)
metadata_path = 'recipes_metadata.xlsx'
metadata = retrieve_metadata(document_indices, metadata_path=metadata_path)
print(f"Retrieved Metadata: {metadata}")
recipes = []
for item in metadata.values():
recipes.append({
"title": item["original_file_name"] if "original_file_name" in item else "Unknown Title",
"url": item["url"] if "url" in item else ""
})
print(recipes)
return recipes
except ValueError as ve:
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
if not init_success:
print("Warning: Application initialized with partial functionality")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |