Spaces:
Sleeping
Sleeping
Commit
·
1dbb3fe
1
Parent(s):
d32adc2
Update app.py
Browse files
app.py
CHANGED
@@ -25,6 +25,7 @@ from huggingface_hub import hf_hub_download
|
|
25 |
from safetensors.torch import load_file
|
26 |
from typing import List, Dict, Optional
|
27 |
from safetensors.numpy import load_file
|
|
|
28 |
|
29 |
# Initialize FastAPI app
|
30 |
app = FastAPI()
|
@@ -112,7 +113,6 @@ def load_models():
|
|
112 |
return False
|
113 |
|
114 |
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
115 |
-
"""Load embeddings from Safetensors file"""
|
116 |
try:
|
117 |
# Locate or download embeddings file
|
118 |
embeddings_path = 'embeddings.safetensors'
|
@@ -124,25 +124,38 @@ def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
|
124 |
repo_type="space"
|
125 |
)
|
126 |
|
127 |
-
#
|
128 |
-
embeddings =
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
return result
|
141 |
|
142 |
except Exception as e:
|
143 |
print(f"Error loading embeddings: {e}")
|
144 |
return None
|
145 |
|
|
|
146 |
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
|
147 |
"""Load document data from HTML articles in a specified folder."""
|
148 |
try:
|
|
|
25 |
from safetensors.torch import load_file
|
26 |
from typing import List, Dict, Optional
|
27 |
from safetensors.numpy import load_file
|
28 |
+
from safetensors.torch import safe_open
|
29 |
|
30 |
# Initialize FastAPI app
|
31 |
app = FastAPI()
|
|
|
113 |
return False
|
114 |
|
115 |
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
|
|
116 |
try:
|
117 |
# Locate or download embeddings file
|
118 |
embeddings_path = 'embeddings.safetensors'
|
|
|
124 |
repo_type="space"
|
125 |
)
|
126 |
|
127 |
+
# Initialize a dictionary to store embeddings
|
128 |
+
embeddings = {}
|
129 |
+
|
130 |
+
# Open the safetensors file
|
131 |
+
with safe_open(embeddings_path, framework="pt") as f:
|
132 |
+
keys = f.keys()
|
133 |
+
print(f"Available keys in the .safetensors file: {list(keys)}") # Debugging info
|
134 |
+
|
135 |
+
# Iterate over the keys and load tensors
|
136 |
+
for key in keys:
|
137 |
+
try:
|
138 |
+
tensor = f.get_tensor(key)
|
139 |
+
if not isinstance(tensor, torch.Tensor):
|
140 |
+
raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.")
|
141 |
+
|
142 |
+
# Convert tensor to NumPy array
|
143 |
+
embeddings[key] = tensor.numpy()
|
144 |
+
except Exception as key_error:
|
145 |
+
print(f"Failed to process key {key}: {key_error}")
|
146 |
+
|
147 |
+
if embeddings:
|
148 |
+
print("Embeddings successfully loaded.")
|
149 |
+
else:
|
150 |
+
print("No embeddings could be loaded. Please check the file format and content.")
|
151 |
|
152 |
+
return embeddings
|
|
|
153 |
|
154 |
except Exception as e:
|
155 |
print(f"Error loading embeddings: {e}")
|
156 |
return None
|
157 |
|
158 |
+
|
159 |
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
|
160 |
"""Load document data from HTML articles in a specified folder."""
|
161 |
try:
|