Spaces:
Sleeping
Sleeping
Commit
·
9b2f654
1
Parent(s):
f5a7c15
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import os
|
2 |
-
import pickle
|
3 |
import numpy as np
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
from pydantic import BaseModel
|
7 |
from transformers import (
|
8 |
-
AutoTokenizer,
|
9 |
-
AutoModelForSeq2SeqLM,
|
10 |
AutoModelForTokenClassification,
|
11 |
AutoModelForCausalLM,
|
12 |
pipeline
|
@@ -17,12 +16,9 @@ from bs4 import BeautifulSoup
|
|
17 |
import nltk
|
18 |
import torch
|
19 |
import pandas as pd
|
20 |
-
import subprocess
|
21 |
-
from typing import Dict, Optional
|
22 |
-
import codecs
|
23 |
from huggingface_hub import hf_hub_download
|
|
|
24 |
|
25 |
-
|
26 |
# Initialize FastAPI app
|
27 |
app = FastAPI()
|
28 |
|
@@ -56,31 +52,31 @@ def load_models():
|
|
56 |
"""Initialize all required models"""
|
57 |
try:
|
58 |
print("Loading models...")
|
59 |
-
|
60 |
# Set device
|
61 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
62 |
print(f"Device set to use {device}")
|
63 |
-
|
64 |
# Embedding models
|
65 |
models['embedding'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
66 |
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
|
67 |
-
|
68 |
# Translation models
|
69 |
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
70 |
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
71 |
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
72 |
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
73 |
-
|
74 |
# NER model
|
75 |
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
|
76 |
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
|
77 |
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
|
78 |
-
|
79 |
# LLM model
|
80 |
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
|
81 |
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
|
82 |
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
|
83 |
-
|
84 |
print("Models loaded successfully")
|
85 |
return True
|
86 |
except Exception as e:
|
@@ -89,40 +85,26 @@ def load_models():
|
|
89 |
|
90 |
|
91 |
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
92 |
-
"""Load embeddings from
|
93 |
try:
|
94 |
-
|
95 |
-
import numpy as np
|
96 |
-
import os
|
97 |
-
from typing import Dict, Optional
|
98 |
-
|
99 |
-
embeddings_path = 'embeddings.pkl'
|
100 |
if not os.path.exists(embeddings_path):
|
101 |
-
from huggingface_hub import hf_hub_download
|
102 |
embeddings_path = hf_hub_download(
|
103 |
repo_id=os.environ.get('HF_SPACE_ID', ''),
|
104 |
-
filename="embeddings.
|
105 |
repo_type="space"
|
106 |
)
|
107 |
|
108 |
-
|
109 |
-
def find_class(self, module, name):
|
110 |
-
if module == "__main__":
|
111 |
-
module = "numpy"
|
112 |
-
return super().find_class(module, name)
|
113 |
-
|
114 |
-
with open(embeddings_path, 'rb') as f:
|
115 |
-
unpickler = ASCIIUnpickler(f)
|
116 |
-
embeddings = unpickler.load()
|
117 |
-
|
118 |
if not isinstance(embeddings, dict):
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
except Exception as e:
|
124 |
print(f"Error loading embeddings: {e}")
|
125 |
return None
|
|
|
126 |
|
127 |
def load_documents_data():
|
128 |
"""Load document data with error handling"""
|
|
|
1 |
import os
|
|
|
2 |
import numpy as np
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from fastapi.middleware.cors import CORSMiddleware
|
5 |
from pydantic import BaseModel
|
6 |
from transformers import (
|
7 |
+
AutoTokenizer,
|
8 |
+
AutoModelForSeq2SeqLM,
|
9 |
AutoModelForTokenClassification,
|
10 |
AutoModelForCausalLM,
|
11 |
pipeline
|
|
|
16 |
import nltk
|
17 |
import torch
|
18 |
import pandas as pd
|
|
|
|
|
|
|
19 |
from huggingface_hub import hf_hub_download
|
20 |
+
from safetensors.torch import load_file # Import Safetensors loader
|
21 |
|
|
|
22 |
# Initialize FastAPI app
|
23 |
app = FastAPI()
|
24 |
|
|
|
52 |
"""Initialize all required models"""
|
53 |
try:
|
54 |
print("Loading models...")
|
55 |
+
|
56 |
# Set device
|
57 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
58 |
print(f"Device set to use {device}")
|
59 |
+
|
60 |
# Embedding models
|
61 |
models['embedding'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
62 |
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
|
63 |
+
|
64 |
# Translation models
|
65 |
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
66 |
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
67 |
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
68 |
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
69 |
+
|
70 |
# NER model
|
71 |
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
|
72 |
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
|
73 |
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
|
74 |
+
|
75 |
# LLM model
|
76 |
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
|
77 |
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
|
78 |
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
|
79 |
+
|
80 |
print("Models loaded successfully")
|
81 |
return True
|
82 |
except Exception as e:
|
|
|
85 |
|
86 |
|
87 |
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
88 |
+
"""Load embeddings from Safetensors file"""
|
89 |
try:
|
90 |
+
embeddings_path = 'embeddings.safetensors'
|
|
|
|
|
|
|
|
|
|
|
91 |
if not os.path.exists(embeddings_path):
|
|
|
92 |
embeddings_path = hf_hub_download(
|
93 |
repo_id=os.environ.get('HF_SPACE_ID', ''),
|
94 |
+
filename="embeddings.safetensors",
|
95 |
repo_type="space"
|
96 |
)
|
97 |
|
98 |
+
embeddings = load_file(embeddings_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
if not isinstance(embeddings, dict):
|
100 |
+
raise ValueError("Invalid format for embeddings in Safetensors file.")
|
101 |
+
|
102 |
+
# Convert to dictionary with numpy arrays
|
103 |
+
return {k: tensor.numpy() for k, tensor in embeddings.items()}
|
104 |
except Exception as e:
|
105 |
print(f"Error loading embeddings: {e}")
|
106 |
return None
|
107 |
+
|
108 |
|
109 |
def load_documents_data():
|
110 |
"""Load document data with error handling"""
|