Spaces:
Sleeping
Sleeping
Commit
·
66387cc
1
Parent(s):
8497042
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,9 @@ import nltk
|
|
7 |
import torch
|
8 |
import pandas as pd
|
9 |
import requests
|
|
|
|
|
|
|
10 |
from fastapi import FastAPI, HTTPException
|
11 |
from fastapi.middleware.cors import CORSMiddleware
|
12 |
from pydantic import BaseModel
|
@@ -130,7 +133,7 @@ def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
|
130 |
# Open the safetensors file
|
131 |
with safe_open(embeddings_path, framework="pt") as f:
|
132 |
keys = f.keys()
|
133 |
-
|
134 |
|
135 |
# Iterate over the keys and load tensors
|
136 |
for key in keys:
|
@@ -155,6 +158,46 @@ def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
|
155 |
print(f"Error loading embeddings: {e}")
|
156 |
return None
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
|
160 |
"""Load document data from HTML articles in a specified folder."""
|
@@ -195,16 +238,87 @@ def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
|
|
195 |
data['df'] = pd.DataFrame()
|
196 |
return False
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
def load_data():
|
199 |
"""Load all required data"""
|
200 |
embeddings_success = load_embeddings()
|
201 |
documents_success = load_documents_data()
|
202 |
-
|
203 |
-
|
|
|
204 |
print("Warning: Failed to load embeddings, falling back to basic functionality")
|
205 |
-
if not
|
206 |
print("Warning: Failed to load documents data, falling back to basic functionality")
|
207 |
-
|
208 |
return True
|
209 |
|
210 |
# Initialize application
|
@@ -248,6 +362,21 @@ def query_embeddings(query_embedding, embeddings_data=None, n_results=5):
|
|
248 |
print(f"Error in query_embeddings: {e}")
|
249 |
return []
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
def get_page_title(url):
|
252 |
try:
|
253 |
response = requests.get(url)
|
@@ -280,6 +409,48 @@ def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded
|
|
280 |
texts.append("")
|
281 |
return texts
|
282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
|
284 |
def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
|
285 |
try:
|
@@ -646,9 +817,9 @@ async def recipes_endpoint(profile: MedicalProfile):
|
|
646 |
raise ValueError("Failed to generate query embedding.")
|
647 |
|
648 |
# Load embeddings and retrieve initial results
|
649 |
-
embeddings_data =
|
650 |
-
folder_path = '
|
651 |
-
initial_results =
|
652 |
if not initial_results:
|
653 |
raise ValueError("No relevant recipes found.")
|
654 |
|
@@ -656,7 +827,7 @@ async def recipes_endpoint(profile: MedicalProfile):
|
|
656 |
document_ids = [doc_id for doc_id, _ in initial_results]
|
657 |
|
658 |
# Retrieve document texts
|
659 |
-
document_texts =
|
660 |
if not document_texts:
|
661 |
raise ValueError("Failed to retrieve document texts.")
|
662 |
|
|
|
7 |
import torch
|
8 |
import pandas as pd
|
9 |
import requests
|
10 |
+
import zipfile
|
11 |
+
import tempfile
|
12 |
+
from PyPDF2 import PdfReader
|
13 |
from fastapi import FastAPI, HTTPException
|
14 |
from fastapi.middleware.cors import CORSMiddleware
|
15 |
from pydantic import BaseModel
|
|
|
133 |
# Open the safetensors file
|
134 |
with safe_open(embeddings_path, framework="pt") as f:
|
135 |
keys = f.keys()
|
136 |
+
#0print(f"Available keys in the .safetensors file: {list(keys)}") # Debugging info
|
137 |
|
138 |
# Iterate over the keys and load tensors
|
139 |
for key in keys:
|
|
|
158 |
print(f"Error loading embeddings: {e}")
|
159 |
return None
|
160 |
|
161 |
+
def load_recipes_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
162 |
+
try:
|
163 |
+
# Locate or download the embeddings file
|
164 |
+
embeddings_path = 'recipes_embeddings.safetensors'
|
165 |
+
if not os.path.exists(embeddings_path):
|
166 |
+
print("File not found locally. Attempting to download from Hugging Face Hub...")
|
167 |
+
embeddings_path = hf_hub_download(
|
168 |
+
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
|
169 |
+
filename="embeddings.safetensors",
|
170 |
+
repo_type="space"
|
171 |
+
)
|
172 |
+
# Initialize a dictionary to store embeddings
|
173 |
+
embeddings = {}
|
174 |
+
# Open the safetensors file
|
175 |
+
with safe_open(embeddings_path, framework="pt") as f:
|
176 |
+
keys = list(f.keys())
|
177 |
+
#print(f"Available keys in the .safetensors file: {keys}") # Debugging info
|
178 |
+
|
179 |
+
# Iterate over the keys and load tensors
|
180 |
+
for key in keys:
|
181 |
+
try:
|
182 |
+
tensor = f.get_tensor(key) # Get the tensor associated with the key
|
183 |
+
if tensor.shape[0] != 384: # Optional: Validate tensor shape
|
184 |
+
print(f"Warning: Tensor for key {key} has unexpected shape {tensor.shape}")
|
185 |
+
|
186 |
+
# Convert tensor to NumPy array
|
187 |
+
embeddings[key] = tensor.numpy()
|
188 |
+
except Exception as key_error:
|
189 |
+
print(f"Failed to process key {key}: {key_error}")
|
190 |
+
|
191 |
+
if embeddings:
|
192 |
+
print(f"Successfully loaded {len(embeddings)} embeddings.")
|
193 |
+
else:
|
194 |
+
print("No embeddings could be loaded. Please check the file format and content.")
|
195 |
+
|
196 |
+
return embeddings
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
print(f"Error loading embeddings: {e}")
|
200 |
+
return None
|
201 |
|
202 |
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
|
203 |
"""Load document data from HTML articles in a specified folder."""
|
|
|
238 |
data['df'] = pd.DataFrame()
|
239 |
return False
|
240 |
|
241 |
+
def load_recipes_data(folder_path='pdf kb.zip'):
|
242 |
+
try:
|
243 |
+
print("Loading documents data...")
|
244 |
+
temp_dir = None
|
245 |
+
|
246 |
+
# Handle .zip file
|
247 |
+
if folder_path.endswith('.zip'):
|
248 |
+
if not os.path.exists(folder_path):
|
249 |
+
print(f"Error: .zip file '{folder_path}' not found.")
|
250 |
+
return False
|
251 |
+
|
252 |
+
# Create a temporary directory for extracting the .zip
|
253 |
+
temp_dir = tempfile.TemporaryDirectory()
|
254 |
+
extract_path = temp_dir.name
|
255 |
+
|
256 |
+
# Extract the .zip file
|
257 |
+
try:
|
258 |
+
with zipfile.ZipFile(folder_path, 'r') as zip_ref:
|
259 |
+
zip_ref.extractall(extract_path)
|
260 |
+
print(f"Extracted .zip file to temporary folder: {extract_path}")
|
261 |
+
except Exception as e:
|
262 |
+
print(f"Error extracting .zip file: {e}")
|
263 |
+
return False
|
264 |
+
|
265 |
+
# Update the folder_path to the extracted directory
|
266 |
+
folder_path = extract_path
|
267 |
+
|
268 |
+
# Check if the folder exists
|
269 |
+
if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
|
270 |
+
print(f"Error: Folder '{folder_path}' not found.")
|
271 |
+
return False
|
272 |
+
|
273 |
+
# List all HTML or PDF files in the folder
|
274 |
+
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
|
275 |
+
pdf_files = [f for f in os.listdir(folder_path) if f.endswith('.pdf')]
|
276 |
+
|
277 |
+
if not html_files and not pdf_files:
|
278 |
+
print(f"No HTML or PDF files found in folder '{folder_path}'.")
|
279 |
+
return False
|
280 |
+
|
281 |
+
documents = []
|
282 |
+
|
283 |
+
# Process PDF files (requires a PDF parser like PyPDF2)
|
284 |
+
for file_name in pdf_files:
|
285 |
+
file_path = os.path.join(folder_path, file_name)
|
286 |
+
try:
|
287 |
+
from PyPDF2 import PdfReader # Import here to avoid dependency issues
|
288 |
+
reader = PdfReader(file_path)
|
289 |
+
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
|
290 |
+
documents.append({"file_name": file_name, "content": text})
|
291 |
+
except Exception as e:
|
292 |
+
print(f"Error reading PDF file {file_name}: {e}")
|
293 |
+
|
294 |
+
# Convert the list of documents to a DataFrame
|
295 |
+
data['df'] = pd.DataFrame(documents)
|
296 |
+
|
297 |
+
if data['df'].empty:
|
298 |
+
print("No valid documents loaded.")
|
299 |
+
return False
|
300 |
+
|
301 |
+
print(f"Successfully loaded {len(data['df'])} document records.")
|
302 |
+
return True
|
303 |
+
except Exception as e:
|
304 |
+
print(f"Error loading documents data: {e}")
|
305 |
+
data['df'] = pd.DataFrame()
|
306 |
+
return False
|
307 |
+
finally:
|
308 |
+
# Clean up the temporary directory, if created
|
309 |
+
if temp_dir:
|
310 |
+
temp_dir.cleanup()
|
311 |
+
|
312 |
def load_data():
|
313 |
"""Load all required data"""
|
314 |
embeddings_success = load_embeddings()
|
315 |
documents_success = load_documents_data()
|
316 |
+
recipes_success = load_recipes_data()
|
317 |
+
recipes_embeddings_success = load_recipes_embeddings()
|
318 |
+
if not recipes_embeddings_success:
|
319 |
print("Warning: Failed to load embeddings, falling back to basic functionality")
|
320 |
+
if not recipes_success:
|
321 |
print("Warning: Failed to load documents data, falling back to basic functionality")
|
|
|
322 |
return True
|
323 |
|
324 |
# Initialize application
|
|
|
362 |
print(f"Error in query_embeddings: {e}")
|
363 |
return []
|
364 |
|
365 |
+
def query_recipes_embeddings(query_embedding, embeddings_data=None, n_results=5):
|
366 |
+
embeddings_data = load_recipes_embeddings()
|
367 |
+
if not embeddings_data:
|
368 |
+
print("No embeddings data available.")
|
369 |
+
return []
|
370 |
+
try:
|
371 |
+
doc_ids = list(embeddings_data.keys())
|
372 |
+
doc_embeddings = np.array(list(embeddings_data.values()))
|
373 |
+
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
|
374 |
+
top_indices = similarities.argsort()[-n_results:][::-1]
|
375 |
+
return [(doc_ids[i], similarities[i]) for i in top_indices]
|
376 |
+
except Exception as e:
|
377 |
+
print(f"Error in query_embeddings: {e}")
|
378 |
+
return []
|
379 |
+
|
380 |
def get_page_title(url):
|
381 |
try:
|
382 |
response = requests.get(url)
|
|
|
409 |
texts.append("")
|
410 |
return texts
|
411 |
|
412 |
+
def retrieve_recipes_texts(doc_ids, zip_path='pdf kb.zip'):
|
413 |
+
texts = []
|
414 |
+
|
415 |
+
try:
|
416 |
+
# Check if the .zip file exists
|
417 |
+
if not os.path.exists(zip_path):
|
418 |
+
print(f"Error: Zip file not found at '{zip_path}'")
|
419 |
+
return ["" for _ in doc_ids]
|
420 |
+
|
421 |
+
# Create a temporary directory to extract the .zip contents
|
422 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
423 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
424 |
+
zip_ref.extractall(temp_dir) # Extract all files to the temp directory
|
425 |
+
|
426 |
+
# Iterate through the document IDs
|
427 |
+
for doc_id in doc_ids:
|
428 |
+
# Construct the expected PDF file path
|
429 |
+
pdf_path = os.path.join(temp_dir, f"{doc_id}.pdf")
|
430 |
+
try:
|
431 |
+
# Check if the PDF file exists
|
432 |
+
if not os.path.exists(pdf_path):
|
433 |
+
print(f"Warning: PDF file not found: {pdf_path}")
|
434 |
+
texts.append("")
|
435 |
+
continue
|
436 |
+
|
437 |
+
# Read and extract text from the PDF
|
438 |
+
with open(pdf_path, 'rb') as pdf_file:
|
439 |
+
reader = PdfReader(pdf_file)
|
440 |
+
pdf_text = ""
|
441 |
+
for page in reader.pages:
|
442 |
+
pdf_text += page.extract_text()
|
443 |
+
|
444 |
+
# Add the extracted text to the result list
|
445 |
+
texts.append(pdf_text.strip())
|
446 |
+
except Exception as e:
|
447 |
+
print(f"Error retrieving text from document {doc_id}: {e}")
|
448 |
+
texts.append("")
|
449 |
+
|
450 |
+
except Exception as e:
|
451 |
+
print(f"Error handling zip file: {e}")
|
452 |
+
return ["" for _ in doc_ids]
|
453 |
+
return texts
|
454 |
|
455 |
def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
|
456 |
try:
|
|
|
817 |
raise ValueError("Failed to generate query embedding.")
|
818 |
|
819 |
# Load embeddings and retrieve initial results
|
820 |
+
embeddings_data = load_recipes_embeddings()
|
821 |
+
folder_path = 'pdf kb.zip'
|
822 |
+
initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results=10)
|
823 |
if not initial_results:
|
824 |
raise ValueError("No relevant recipes found.")
|
825 |
|
|
|
827 |
document_ids = [doc_id for doc_id, _ in initial_results]
|
828 |
|
829 |
# Retrieve document texts
|
830 |
+
document_texts = retrieve_recipes_texts(document_ids, folder_path)
|
831 |
if not document_texts:
|
832 |
raise ValueError("Failed to retrieve document texts.")
|
833 |
|