thechaiexperiment commited on
Commit
3aad967
·
verified ·
1 Parent(s): a695e3b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -731,7 +731,6 @@ async def recipes_endpoint(profile: MedicalProfile):
731
  f"{profile.conditions} and experiencing {profile.daily_symptoms}"
732
  )
733
  query_text = recipe_query
734
-
735
  print(f"Generated query text: {query_text}")
736
 
737
  # Generate the query embedding
@@ -745,15 +744,15 @@ async def recipes_endpoint(profile: MedicalProfile):
745
  initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results=10)
746
  if not initial_results:
747
  raise ValueError("No relevant recipes found.")
748
-
749
  # Extract document IDs
750
  document_ids = [doc_id for doc_id, _ in initial_results]
751
-
752
  # Retrieve document texts
753
  document_texts = retrieve_rec_texts(document_ids, folder_path)
754
  if not document_texts:
755
  raise ValueError("Failed to retrieve document texts.")
756
-
757
  # Perform re-ranking with cross-encoder
758
  cross_encoder = models['cross_encoder']
759
  scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
 
731
  f"{profile.conditions} and experiencing {profile.daily_symptoms}"
732
  )
733
  query_text = recipe_query
 
734
  print(f"Generated query text: {query_text}")
735
 
736
  # Generate the query embedding
 
744
  initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results=10)
745
  if not initial_results:
746
  raise ValueError("No relevant recipes found.")
747
+ print(initial_results)
748
  # Extract document IDs
749
  document_ids = [doc_id for doc_id, _ in initial_results]
750
+ print(document_ids)
751
  # Retrieve document texts
752
  document_texts = retrieve_rec_texts(document_ids, folder_path)
753
  if not document_texts:
754
  raise ValueError("Failed to retrieve document texts.")
755
+ print(document_texts)
756
  # Perform re-ranking with cross-encoder
757
  cross_encoder = models['cross_encoder']
758
  scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])