thechaiexperiment commited on
Commit
089f890
·
verified ·
1 Parent(s): 9866ed8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -16
app.py CHANGED
@@ -317,7 +317,7 @@ def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes
317
  required_columns = {'id', 'original_file_name', 'url'}
318
  if not required_columns.issubset(metadata_df.columns):
319
  raise ValueError(f"Metadata file must contain columns: {required_columns}")
320
- metadata_df['id'] = metadata_df['id'].astype(int) # Ensure 'id' is of type int
321
  filtered_metadata = metadata_df[metadata_df['id'].isin(document_indices)]
322
  metadata_dict = {
323
  int(row['id']): {
@@ -331,21 +331,6 @@ def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes
331
  print(f"Error retrieving metadata: {e}")
332
  return {}
333
 
334
-
335
- def retrieve_metadata(document_indices: List[str], metadata_path: str = 'recipes_metadata.xlsx') -> Dict[str, Dict[str, str]]:
336
- try:
337
- metadata_df = pd.read_excel(metadata_path)
338
- required_columns = {'id', 'original_file_name', 'url'}
339
- if not required_columns.issubset(metadata_df.columns):
340
- raise ValueError(f"Metadata file must contain the following columns: {required_columns}")
341
- metadata_mapping = metadata_df.set_index('id')[['original_file_name', 'url']].to_dict('index')
342
- result = {doc_id: metadata_mapping.get(doc_id, {}) for doc_id in document_indices}
343
- return result
344
- except Exception as e:
345
- print(f"Error retrieving metadata: {e}")
346
- return {}
347
-
348
-
349
  def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
350
  try:
351
  pairs = [(query, doc) for doc in document_texts]
 
317
  required_columns = {'id', 'original_file_name', 'url'}
318
  if not required_columns.issubset(metadata_df.columns):
319
  raise ValueError(f"Metadata file must contain columns: {required_columns}")
320
+ metadata_df['id'] = metadata_df['id'].astype(int)
321
  filtered_metadata = metadata_df[metadata_df['id'].isin(document_indices)]
322
  metadata_dict = {
323
  int(row['id']): {
 
331
  print(f"Error retrieving metadata: {e}")
332
  return {}
333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334
  def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
335
  try:
336
  pairs = [(query, doc) for doc in document_texts]