Spaces:
Sleeping
Sleeping
Commit
·
6c38ae6
1
Parent(s):
58d2f18
Update app.py
Browse files
app.py
CHANGED
|
@@ -494,13 +494,6 @@ if final_answer:
|
|
| 494 |
else:
|
| 495 |
print("Sorry, I can't help with that.")
|
| 496 |
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
@app.get("/")
|
| 505 |
async def root():
|
| 506 |
return {"message": "Welcome to the FastAPI application! Use the /health endpoint to check health, and /api/query for processing queries."}
|
|
@@ -520,59 +513,47 @@ async def health_check():
|
|
| 520 |
async def chat_endpoint(chat_query: ChatQuery):
|
| 521 |
try:
|
| 522 |
query_text = chat_query.query
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
# Step 2: Retrieve top results using embeddings similarity
|
| 528 |
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
|
| 529 |
document_ids = [doc_id for doc_id, _ in initial_results]
|
| 530 |
-
|
| 531 |
-
# Step 3: Fetch document texts
|
| 532 |
document_texts = retrieve_document_texts(document_ids, folder_path)
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
relevant_portions = extract_relevant_portions(
|
| 539 |
-
document_texts,
|
| 540 |
-
query=query_text,
|
| 541 |
-
max_portions=3,
|
| 542 |
-
portion_size=1,
|
| 543 |
-
min_query_words=1
|
| 544 |
-
)
|
| 545 |
-
|
| 546 |
-
# Step 6: Flatten and clean relevant portions
|
| 547 |
flattened_relevant_portions = []
|
| 548 |
for doc_id, portions in relevant_portions.items():
|
| 549 |
flattened_relevant_portions.extend(portions)
|
| 550 |
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
|
| 551 |
combined_parts = " ".join(unique_selected_parts)
|
| 552 |
-
|
| 553 |
-
# Step 7: Extract entities and enhance passage
|
| 554 |
entities = extract_entities(query_text)
|
| 555 |
passage = enhance_passage_with_entities(combined_parts, entities)
|
| 556 |
-
|
| 557 |
-
# Step 8: Create prompt and generate answer
|
| 558 |
prompt = create_prompt(query_text, passage)
|
| 559 |
-
answer
|
| 560 |
-
|
| 561 |
-
# Step 9: Clean the generated answer
|
| 562 |
answer_part = answer.split("Answer:")[-1].strip()
|
| 563 |
cleaned_answer = remove_answer_prefix(answer_part)
|
| 564 |
final_answer = remove_incomplete_sentence(cleaned_answer)
|
| 565 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 566 |
return {
|
| 567 |
"response": final_answer,
|
| 568 |
"conversation_id": chat_query.conversation_id,
|
| 569 |
"success": True
|
| 570 |
}
|
| 571 |
-
|
| 572 |
except Exception as e:
|
| 573 |
raise HTTPException(status_code=500, detail=str(e))
|
| 574 |
|
| 575 |
-
|
| 576 |
@app.post("/api/resources")
|
| 577 |
async def resources_endpoint(profile: MedicalProfile):
|
| 578 |
try:
|
|
@@ -582,15 +563,17 @@ async def resources_endpoint(profile: MedicalProfile):
|
|
| 582 |
Restrictions: {', '.join(profile.food_restrictions)}
|
| 583 |
Mental health: {', '.join(profile.mental_conditions)}
|
| 584 |
"""
|
| 585 |
-
|
| 586 |
-
query_embedding =
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
|
|
|
|
|
|
| 594 |
resources = []
|
| 595 |
for (doc_id, _), score, text in ranked_docs[:10]:
|
| 596 |
doc_info = data['df'][data['df']['id'] == doc_id].iloc[0]
|
|
@@ -600,7 +583,6 @@ async def resources_endpoint(profile: MedicalProfile):
|
|
| 600 |
"content": text[:200],
|
| 601 |
"score": float(score)
|
| 602 |
})
|
| 603 |
-
|
| 604 |
return {"resources": resources, "success": True}
|
| 605 |
except Exception as e:
|
| 606 |
raise HTTPException(status_code=500, detail=str(e))
|
|
@@ -609,15 +591,17 @@ async def resources_endpoint(profile: MedicalProfile):
|
|
| 609 |
async def recipes_endpoint(profile: MedicalProfile):
|
| 610 |
try:
|
| 611 |
recipe_query = f"Recipes and meals suitable for someone with: {', '.join(profile.chronic_conditions + profile.food_restrictions)}"
|
| 612 |
-
|
| 613 |
-
query_embedding =
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
|
|
|
|
|
|
| 621 |
recipes = []
|
| 622 |
for (doc_id, _), score, text in ranked_docs[:10]:
|
| 623 |
doc_info = data['df'][data['df']['id'] == doc_id].iloc[0]
|
|
@@ -628,13 +612,10 @@ async def recipes_endpoint(profile: MedicalProfile):
|
|
| 628 |
"content": text[:200],
|
| 629 |
"score": float(score)
|
| 630 |
})
|
| 631 |
-
|
| 632 |
return {"recipes": recipes[:5], "success": True}
|
| 633 |
except Exception as e:
|
| 634 |
raise HTTPException(status_code=500, detail=str(e))
|
| 635 |
|
| 636 |
-
|
| 637 |
-
|
| 638 |
if not init_success:
|
| 639 |
print("Warning: Application initialized with partial functionality")
|
| 640 |
|
|
|
|
| 494 |
else:
|
| 495 |
print("Sorry, I can't help with that.")
|
| 496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
@app.get("/")
|
| 498 |
async def root():
|
| 499 |
return {"message": "Welcome to the FastAPI application! Use the /health endpoint to check health, and /api/query for processing queries."}
|
|
|
|
| 513 |
async def chat_endpoint(chat_query: ChatQuery):
|
| 514 |
try:
|
| 515 |
query_text = chat_query.query
|
| 516 |
+
language_code = chat_query.language_code
|
| 517 |
+
query_embedding = embed_query_text(query_text) # Embed the query text
|
| 518 |
+
embeddings_data = load_embeddings ()
|
| 519 |
+
folder_path = 'downloaded_articles/downloaded_articles'
|
|
|
|
| 520 |
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
|
| 521 |
document_ids = [doc_id for doc_id, _ in initial_results]
|
| 522 |
+
document_ids = [doc_id for doc_id, _ in initial_results]
|
|
|
|
| 523 |
document_texts = retrieve_document_texts(document_ids, folder_path)
|
| 524 |
+
cross_encoder = models['cross_encoder']
|
| 525 |
+
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
|
| 526 |
+
scored_documents = list(zip(scores, document_ids, document_texts))
|
| 527 |
+
scored_documents.sort(key=lambda x: x[0], reverse=True)
|
| 528 |
+
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
flattened_relevant_portions = []
|
| 530 |
for doc_id, portions in relevant_portions.items():
|
| 531 |
flattened_relevant_portions.extend(portions)
|
| 532 |
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
|
| 533 |
combined_parts = " ".join(unique_selected_parts)
|
| 534 |
+
context = [query_text] + unique_selected_parts
|
|
|
|
| 535 |
entities = extract_entities(query_text)
|
| 536 |
passage = enhance_passage_with_entities(combined_parts, entities)
|
|
|
|
|
|
|
| 537 |
prompt = create_prompt(query_text, passage)
|
| 538 |
+
answer = generate_answer(prompt)
|
|
|
|
|
|
|
| 539 |
answer_part = answer.split("Answer:")[-1].strip()
|
| 540 |
cleaned_answer = remove_answer_prefix(answer_part)
|
| 541 |
final_answer = remove_incomplete_sentence(cleaned_answer)
|
| 542 |
+
if language_code == 0:
|
| 543 |
+
final_answer = translate_en_to_ar(final_answer)
|
| 544 |
+
if final_answer:
|
| 545 |
+
print("Answer:")
|
| 546 |
+
print(final_answer)
|
| 547 |
+
else:
|
| 548 |
+
print("Sorry, I can't help with that.")
|
| 549 |
return {
|
| 550 |
"response": final_answer,
|
| 551 |
"conversation_id": chat_query.conversation_id,
|
| 552 |
"success": True
|
| 553 |
}
|
|
|
|
| 554 |
except Exception as e:
|
| 555 |
raise HTTPException(status_code=500, detail=str(e))
|
| 556 |
|
|
|
|
| 557 |
@app.post("/api/resources")
|
| 558 |
async def resources_endpoint(profile: MedicalProfile):
|
| 559 |
try:
|
|
|
|
| 563 |
Restrictions: {', '.join(profile.food_restrictions)}
|
| 564 |
Mental health: {', '.join(profile.mental_conditions)}
|
| 565 |
"""
|
| 566 |
+
query_text = context
|
| 567 |
+
query_embedding = embed_query_text(query_text) # Embed the query text
|
| 568 |
+
embeddings_data = load_embeddings ()
|
| 569 |
+
folder_path = 'downloaded_articles/downloaded_articles'
|
| 570 |
+
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
|
| 571 |
+
document_ids = [doc_id for doc_id, _ in initial_results]
|
| 572 |
+
document_texts = retrieve_document_texts(document_ids, folder_path)
|
| 573 |
+
cross_encoder = models['cross_encoder']
|
| 574 |
+
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
|
| 575 |
+
scored_documents = list(zip(scores, document_ids, document_texts))
|
| 576 |
+
ranked_docs = scored_documents.sort(key=lambda x: x[0], reverse=True)
|
| 577 |
resources = []
|
| 578 |
for (doc_id, _), score, text in ranked_docs[:10]:
|
| 579 |
doc_info = data['df'][data['df']['id'] == doc_id].iloc[0]
|
|
|
|
| 583 |
"content": text[:200],
|
| 584 |
"score": float(score)
|
| 585 |
})
|
|
|
|
| 586 |
return {"resources": resources, "success": True}
|
| 587 |
except Exception as e:
|
| 588 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
| 591 |
async def recipes_endpoint(profile: MedicalProfile):
|
| 592 |
try:
|
| 593 |
recipe_query = f"Recipes and meals suitable for someone with: {', '.join(profile.chronic_conditions + profile.food_restrictions)}"
|
| 594 |
+
query_text = recipe_query
|
| 595 |
+
query_embedding = embed_query_text(query_text) # Embed the query text
|
| 596 |
+
embeddings_data = load_embeddings ()
|
| 597 |
+
folder_path = 'downloaded_articles/downloaded_articles'
|
| 598 |
+
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
|
| 599 |
+
document_ids = [doc_id for doc_id, _ in initial_results]
|
| 600 |
+
document_texts = retrieve_document_texts(document_ids, folder_path)
|
| 601 |
+
cross_encoder = models['cross_encoder']
|
| 602 |
+
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
|
| 603 |
+
scored_documents = list(zip(scores, document_ids, document_texts))
|
| 604 |
+
ranked_docs = scored_documents.sort(key=lambda x: x[0], reverse=True)
|
| 605 |
recipes = []
|
| 606 |
for (doc_id, _), score, text in ranked_docs[:10]:
|
| 607 |
doc_info = data['df'][data['df']['id'] == doc_id].iloc[0]
|
|
|
|
| 612 |
"content": text[:200],
|
| 613 |
"score": float(score)
|
| 614 |
})
|
|
|
|
| 615 |
return {"recipes": recipes[:5], "success": True}
|
| 616 |
except Exception as e:
|
| 617 |
raise HTTPException(status_code=500, detail=str(e))
|
| 618 |
|
|
|
|
|
|
|
| 619 |
if not init_success:
|
| 620 |
print("Warning: Application initialized with partial functionality")
|
| 621 |
|