Spaces:
Sleeping
Sleeping
Commit
·
7becdb7
1
Parent(s):
cdeba07
Update app.py
Browse files
app.py
CHANGED
|
@@ -82,69 +82,51 @@ def load_models():
|
|
| 82 |
print(f"Error loading models: {e}")
|
| 83 |
return False
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
embeddings_path = 'embeddings.pkl'
|
| 90 |
-
|
| 91 |
-
if not os.path.exists(embeddings_path):
|
| 92 |
-
print(f"Error: {embeddings_path} not found")
|
| 93 |
-
return False
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
def find_class(self, module, name):
|
| 103 |
-
if module == "__main__":
|
| 104 |
-
module = "numpy"
|
| 105 |
-
return super().find_class(module, name)
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
f.seek(0)
|
| 114 |
-
try:
|
| 115 |
-
# Try standard pickle
|
| 116 |
-
data['embeddings'] = pickle.load(f)
|
| 117 |
-
except Exception as e:
|
| 118 |
-
print(f"Standard pickle failed, trying custom unpickler: {e}")
|
| 119 |
-
f.seek(0)
|
| 120 |
-
try:
|
| 121 |
-
# Try custom unpickler with persistent load handler
|
| 122 |
-
unpickler = CustomUnpickler(f)
|
| 123 |
-
data['embeddings'] = unpickler.load()
|
| 124 |
-
except Exception as e:
|
| 125 |
-
print(f"Custom unpickler failed: {e}")
|
| 126 |
-
data['embeddings'] = {}
|
| 127 |
-
return False
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
print(f"Actual type: {type(data['embeddings'])}")
|
| 133 |
-
data['embeddings'] = {}
|
| 134 |
-
return False
|
| 135 |
|
| 136 |
-
#
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
except Exception as e:
|
| 145 |
-
print(f"Error loading embeddings: {e}")
|
| 146 |
-
|
| 147 |
-
return False
|
| 148 |
|
| 149 |
def load_documents_data():
|
| 150 |
"""Load document data with error handling"""
|
|
|
|
| 82 |
print(f"Error loading models: {e}")
|
| 83 |
return False
|
| 84 |
|
| 85 |
+
import pickle
|
| 86 |
+
import numpy as np
|
| 87 |
+
import os
|
| 88 |
+
from typing import Dict, Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
def load_embeddings(embeddings_path: str = 'embeddings.pkl') -> Optional[Dict[str, np.ndarray]]:
|
| 91 |
+
"""
|
| 92 |
+
Load embeddings from a pickle file containing a dictionary of numpy arrays.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
embeddings_path (str): Path to the pickle file containing embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
Returns:
|
| 98 |
+
Optional[Dict[str, np.ndarray]]: Dictionary of embeddings or None if loading fails
|
| 99 |
+
"""
|
| 100 |
+
if not os.path.exists(embeddings_path):
|
| 101 |
+
print(f"Error: {embeddings_path} not found")
|
| 102 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
try:
|
| 105 |
+
with open(embeddings_path, 'rb') as f:
|
| 106 |
+
embeddings = pickle.load(f)
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# Validate the loaded data
|
| 109 |
+
if not isinstance(embeddings, dict):
|
| 110 |
+
print(f"Error: Expected dict, got {type(embeddings)}")
|
| 111 |
+
return None
|
| 112 |
+
|
| 113 |
+
# Convert values to numpy arrays if they aren't already
|
| 114 |
+
for key in embeddings:
|
| 115 |
+
if not isinstance(embeddings[key], np.ndarray):
|
| 116 |
+
embeddings[key] = np.array(embeddings[key])
|
| 117 |
|
| 118 |
+
# Print sample for verification
|
| 119 |
+
sample_key = next(iter(embeddings))
|
| 120 |
+
print(f"Data type: {type(embeddings)}")
|
| 121 |
+
print(f"First few keys and values:")
|
| 122 |
+
print(f"Key: {sample_key}, Value: {embeddings[sample_key][:20]}") # Show first 20 values
|
| 123 |
+
print(f"Successfully loaded {len(embeddings)} embeddings")
|
| 124 |
+
|
| 125 |
+
return embeddings
|
| 126 |
|
| 127 |
except Exception as e:
|
| 128 |
+
print(f"Error loading embeddings: {str(e)}")
|
| 129 |
+
return None
|
|
|
|
| 130 |
|
| 131 |
def load_documents_data():
|
| 132 |
"""Load document data with error handling"""
|