Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,9 +28,12 @@ from sklearn.metrics.pairwise import cosine_similarity
|
|
28 |
from bs4 import BeautifulSoup
|
29 |
from huggingface_hub import hf_hub_download
|
30 |
from safetensors.torch import load_file
|
31 |
-
from typing import List, Dict, Optional
|
32 |
from safetensors.numpy import load_file
|
33 |
from safetensors.torch import safe_open
|
|
|
|
|
|
|
34 |
nltk.download('punkt_tab')
|
35 |
|
36 |
app = FastAPI()
|
@@ -63,6 +66,11 @@ class ChatMessage(BaseModel):
|
|
63 |
content: str
|
64 |
timestamp: str
|
65 |
|
|
|
|
|
|
|
|
|
|
|
66 |
def init_nltk():
|
67 |
try:
|
68 |
nltk.download('punkt', quiet=True)
|
@@ -332,120 +340,155 @@ def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes
|
|
332 |
print(f"Error retrieving metadata: {e}")
|
333 |
return {}
|
334 |
|
335 |
-
def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
|
336 |
try:
|
|
|
337 |
pairs = [(query, doc) for doc in document_texts]
|
338 |
-
scores = cross_encoder_model.predict(pairs)
|
339 |
scored_documents = list(zip(scores, document_ids, document_texts))
|
340 |
scored_documents.sort(key=lambda x: x[0], reverse=True)
|
341 |
-
print("Reranked results:")
|
342 |
-
for idx, (score, doc_id, doc) in enumerate(scored_documents):
|
343 |
-
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})")
|
344 |
return scored_documents
|
345 |
except Exception as e:
|
346 |
print(f"Error reranking documents: {e}")
|
347 |
return []
|
348 |
|
349 |
-
|
350 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
351 |
-
import nltk
|
352 |
-
|
353 |
-
def extract_relevant_portions(query_embedding, top_documents, embeddings_data, max_portions=3):
|
354 |
try:
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
|
|
361 |
|
362 |
-
|
363 |
-
doc_embedding = np.array(embeddings_data[doc_id])
|
364 |
|
365 |
-
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
sentences = nltk.sent_tokenize(doc_text)
|
370 |
-
|
371 |
-
# Rank sentences based on their length (proxy for importance) or other heuristic
|
372 |
-
# Since we're using document-level embeddings, we assume all sentences are equally relevant.
|
373 |
-
sorted_sentences = sorted(sentences, key=lambda x: len(x), reverse=True)[:max_portions]
|
374 |
-
|
375 |
-
relevant_portions[doc_id] = sorted_sentences
|
376 |
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
return relevant_portions
|
382 |
-
|
383 |
except Exception as e:
|
384 |
-
print(f"Error
|
385 |
-
return {}
|
386 |
-
|
387 |
|
388 |
-
def
|
389 |
-
unique_sentences = set()
|
390 |
-
unique_selected_parts = []
|
391 |
-
for sentence in selected_parts:
|
392 |
-
if sentence not in unique_sentences:
|
393 |
-
unique_selected_parts.append(sentence)
|
394 |
-
unique_sentences.add(sentence)
|
395 |
-
return unique_selected_parts
|
396 |
-
|
397 |
-
def extract_entities(text):
|
398 |
try:
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
except Exception as e:
|
412 |
-
print(f"Error
|
413 |
-
return
|
414 |
-
|
415 |
-
def
|
416 |
-
return f"
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
def remove_answer_prefix(text):
|
450 |
prefix = "Answer:"
|
451 |
if prefix in text:
|
@@ -511,48 +554,132 @@ async def health_check():
|
|
511 |
@app.post("/api/chat")
|
512 |
async def chat_endpoint(chat_query: ChatQuery):
|
513 |
try:
|
|
|
|
|
|
|
|
|
514 |
query_text = chat_query.query
|
515 |
-
language_code = chat_query.language_code
|
|
|
516 |
if language_code == 0:
|
517 |
-
query_text = translate_ar_to_en
|
518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
n_results = 5
|
520 |
-
embeddings_data = load_embeddings ()
|
521 |
folder_path = 'downloaded_articles/downloaded_articles'
|
522 |
-
|
523 |
-
|
524 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
cross_encoder = models['cross_encoder']
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
combined_parts = " ".join(unique_selected_parts)
|
535 |
-
|
536 |
-
|
537 |
passage = enhance_passage_with_entities(combined_parts, entities)
|
538 |
prompt = create_prompt(query_text, passage)
|
539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
answer_part = answer.split("Answer:")[-1].strip()
|
541 |
-
cleaned_answer = remove_answer_prefix
|
542 |
-
final_answer = remove_incomplete_sentence
|
|
|
|
|
543 |
if language_code == 0:
|
544 |
-
final_answer = translate_en_to_ar
|
|
|
|
|
|
|
|
|
|
|
545 |
if final_answer:
|
546 |
-
print("Answer
|
547 |
print(final_answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
548 |
else:
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
except Exception as e:
|
|
|
556 |
raise HTTPException(status_code=500, detail=str(e))
|
557 |
|
558 |
@app.post("/api/resources")
|
|
|
28 |
from bs4 import BeautifulSoup
|
29 |
from huggingface_hub import hf_hub_download
|
30 |
from safetensors.torch import load_file
|
31 |
+
from typing import List, Dict,Any,Tuple, Optional
|
32 |
from safetensors.numpy import load_file
|
33 |
from safetensors.torch import safe_open
|
34 |
+
from concurrent.futures import ThreadPoolExecutor
|
35 |
+
import asyncio
|
36 |
+
from functools import partial
|
37 |
nltk.download('punkt_tab')
|
38 |
|
39 |
app = FastAPI()
|
|
|
66 |
content: str
|
67 |
timestamp: str
|
68 |
|
69 |
+
async def run_in_threadpool(func, *args, **kwargs):
|
70 |
+
return await asyncio.get_event_loop().run_in_executor(
|
71 |
+
None, partial(func, *args, **kwargs)
|
72 |
+
)
|
73 |
+
|
74 |
def init_nltk():
|
75 |
try:
|
76 |
nltk.download('punkt', quiet=True)
|
|
|
340 |
print(f"Error retrieving metadata: {e}")
|
341 |
return {}
|
342 |
|
343 |
+
def rerank_documents(query: str, document_ids: List[str], document_texts: List[str], cross_encoder_model) -> List[Tuple[float, str, str]]:
|
344 |
try:
|
345 |
+
# Batch process all documents at once
|
346 |
pairs = [(query, doc) for doc in document_texts]
|
347 |
+
scores = cross_encoder_model.predict(pairs, batch_size=8) # Increased batch size
|
348 |
scored_documents = list(zip(scores, document_ids, document_texts))
|
349 |
scored_documents.sort(key=lambda x: x[0], reverse=True)
|
|
|
|
|
|
|
350 |
return scored_documents
|
351 |
except Exception as e:
|
352 |
print(f"Error reranking documents: {e}")
|
353 |
return []
|
354 |
|
355 |
+
def extract_entities_batch(texts: List[str], biobert_tokenizer, biobert_model, batch_size: int = 8) -> List[List[str]]:
|
|
|
|
|
|
|
|
|
356 |
try:
|
357 |
+
all_entities = []
|
358 |
+
for i in range(0, len(texts), batch_size):
|
359 |
+
batch_texts = texts[i:i + batch_size]
|
360 |
+
# Process multiple texts in parallel
|
361 |
+
inputs = biobert_tokenizer(batch_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
362 |
+
with torch.no_grad(): # Disable gradient calculation
|
363 |
+
outputs = biobert_model(**inputs)
|
364 |
|
365 |
+
predictions = torch.argmax(outputs.logits, dim=2)
|
|
|
366 |
|
367 |
+
for j, (input_ids, preds) in enumerate(zip(inputs.input_ids, predictions)):
|
368 |
+
tokens = biobert_tokenizer.convert_ids_to_tokens(input_ids)
|
369 |
+
entities = [tokens[k] for k in range(len(tokens)) if preds[k].item() != 0]
|
370 |
+
all_entities.append(entities)
|
371 |
+
|
372 |
+
return all_entities
|
373 |
+
except Exception as e:
|
374 |
+
print(f"Error in batch entity extraction: {e}")
|
375 |
+
return [[] for _ in texts]
|
376 |
|
377 |
+
def extract_relevant_portions(document_texts: List[str], query: str, biobert_tokenizer, biobert_model,
|
378 |
+
max_portions: int = 3, portion_size: int = 1) -> Dict[str, List[str]]:
|
379 |
+
try:
|
380 |
+
# Process query and all documents in one batch
|
381 |
+
all_texts = [query] + document_texts
|
382 |
+
all_entities = extract_entities_batch(all_texts, biobert_tokenizer, biobert_model)
|
383 |
+
|
384 |
+
query_entities = set(all_entities[0])
|
385 |
+
relevant_portions = {}
|
386 |
+
|
387 |
+
def process_document(doc_idx: int) -> Tuple[str, List[str]]:
|
388 |
+
doc_text = document_texts[doc_idx]
|
389 |
+
doc_entities = set(all_entities[doc_idx + 1]) # +1 because query was first
|
390 |
+
|
391 |
sentences = nltk.sent_tokenize(doc_text)
|
392 |
+
doc_relevant_portions = []
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
+
# Score sentences based on entity overlap
|
395 |
+
sentence_scores = []
|
396 |
+
for i, sentence in enumerate(sentences):
|
397 |
+
entity_overlap = len(query_entities.intersection(doc_entities))
|
398 |
+
sentence_scores.append((entity_overlap, i))
|
399 |
+
|
400 |
+
# Sort and select top sentences
|
401 |
+
sentence_scores.sort(reverse=True)
|
402 |
+
for _, sent_idx in sentence_scores[:max_portions]:
|
403 |
+
start_idx = max(0, sent_idx - portion_size // 2)
|
404 |
+
end_idx = min(len(sentences), sent_idx + portion_size // 2 + 1)
|
405 |
+
portion = " ".join(sentences[start_idx:end_idx])
|
406 |
+
doc_relevant_portions.append(portion)
|
407 |
+
|
408 |
+
return f"Document_{doc_idx}", doc_relevant_portions
|
409 |
+
|
410 |
+
# Process documents in parallel
|
411 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
412 |
+
results = list(executor.map(lambda x: process_document(x), range(len(document_texts))))
|
413 |
+
|
414 |
+
relevant_portions = dict(results)
|
415 |
return relevant_portions
|
416 |
+
|
417 |
except Exception as e:
|
418 |
+
print(f"Error extracting relevant portions: {e}")
|
419 |
+
return {f"Document_{i}": [] for i in range(len(document_texts))}
|
|
|
420 |
|
421 |
+
def generate_answer(prompt: str, tokenizer_f, model_f, max_length: int = 860, temperature: float = 0.2) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
try:
|
423 |
+
# Optimize input processing
|
424 |
+
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True, max_length=512)
|
425 |
+
|
426 |
+
with torch.no_grad(): # Disable gradient calculation
|
427 |
+
output_ids = model_f.generate(
|
428 |
+
inputs.input_ids,
|
429 |
+
max_length=max_length,
|
430 |
+
num_return_sequences=1,
|
431 |
+
temperature=temperature,
|
432 |
+
pad_token_id=tokenizer_f.eos_token_id,
|
433 |
+
do_sample=False, # Use greedy decoding for faster generation
|
434 |
+
early_stopping=True
|
435 |
+
)
|
436 |
+
|
437 |
+
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
|
438 |
+
|
439 |
+
# Quick relevance check
|
440 |
+
if any(word in answer.lower() for word in prompt.lower().split()):
|
441 |
+
return answer
|
442 |
+
return "I apologize, but I cannot provide a relevant answer based on the given information."
|
443 |
+
|
444 |
except Exception as e:
|
445 |
+
print(f"Error generating answer: {e}")
|
446 |
+
return "I apologize, but I encountered an error while generating the answer."
|
447 |
+
|
448 |
+
def create_prompt(question: str, passage: str) -> str:
|
449 |
+
return f"""As a medical expert, answer the following question based only on the provided passage. Be concise and direct.
|
450 |
+
Passage: {passage}
|
451 |
+
Question: {question}
|
452 |
+
Answer:"""
|
453 |
+
|
454 |
+
def process_query_and_generate_answer(
|
455 |
+
query: str,
|
456 |
+
relevant_documents: List[Tuple[float, str, str]],
|
457 |
+
models: Dict,
|
458 |
+
max_portions: int = 3
|
459 |
+
) -> str:
|
460 |
+
try:
|
461 |
+
# Extract relevant portions from top documents
|
462 |
+
relevant_portions = extract_relevant_portions(
|
463 |
+
[doc[2] for doc in relevant_documents[:3]], # Use top 3 documents
|
464 |
+
query,
|
465 |
+
models['bio_tokenizer'],
|
466 |
+
models['bio_model'],
|
467 |
+
max_portions=max_portions
|
468 |
+
)
|
469 |
+
|
470 |
+
# Combine relevant portions
|
471 |
+
all_portions = []
|
472 |
+
for doc_portions in relevant_portions.values():
|
473 |
+
all_portions.extend(doc_portions)
|
474 |
+
|
475 |
+
# Remove duplicates while preserving order
|
476 |
+
unique_portions = list(dict.fromkeys(all_portions))
|
477 |
+
|
478 |
+
# Create context from unique portions
|
479 |
+
context = " ".join(unique_portions[:max_portions])
|
480 |
+
|
481 |
+
# Generate and return answer
|
482 |
+
prompt = create_prompt(query, context)
|
483 |
+
return generate_answer(
|
484 |
+
prompt,
|
485 |
+
models['llm_tokenizer'],
|
486 |
+
models['llm_model']
|
487 |
+
)
|
488 |
+
|
489 |
+
except Exception as e:
|
490 |
+
print(f"Error in query processing pipeline: {e}")
|
491 |
+
return "I apologize, but I encountered an error while processing your question."
|
492 |
def remove_answer_prefix(text):
|
493 |
prefix = "Answer:"
|
494 |
if prefix in text:
|
|
|
554 |
@app.post("/api/chat")
|
555 |
async def chat_endpoint(chat_query: ChatQuery):
|
556 |
try:
|
557 |
+
# Initialize response timing
|
558 |
+
start_time = asyncio.get_event_loop().time()
|
559 |
+
|
560 |
+
# Extract query and handle translation
|
561 |
query_text = chat_query.query
|
562 |
+
language_code = chat_query.language_code
|
563 |
+
|
564 |
if language_code == 0:
|
565 |
+
query_text = await run_in_threadpool(translate_ar_to_en, query_text)
|
566 |
+
|
567 |
+
# Embed query and load embeddings in parallel
|
568 |
+
query_embedding_task = run_in_threadpool(embed_query_text, query_text)
|
569 |
+
embeddings_data_task = run_in_threadpool(load_embeddings)
|
570 |
+
|
571 |
+
# Wait for both tasks to complete
|
572 |
+
query_embedding, embeddings_data = await asyncio.gather(
|
573 |
+
query_embedding_task,
|
574 |
+
embeddings_data_task
|
575 |
+
)
|
576 |
+
|
577 |
+
# Initial document retrieval
|
578 |
n_results = 5
|
|
|
579 |
folder_path = 'downloaded_articles/downloaded_articles'
|
580 |
+
|
581 |
+
# Get initial results and retrieve documents
|
582 |
+
initial_results = await run_in_threadpool(
|
583 |
+
query_embeddings,
|
584 |
+
query_embedding,
|
585 |
+
embeddings_data,
|
586 |
+
n_results
|
587 |
+
)
|
588 |
+
|
589 |
+
document_ids = [doc_id for doc_id, *_ in initial_results]
|
590 |
+
document_texts = await run_in_threadpool(
|
591 |
+
retrieve_document_texts,
|
592 |
+
document_ids,
|
593 |
+
folder_path
|
594 |
+
)
|
595 |
+
|
596 |
+
# Rerank documents
|
597 |
cross_encoder = models['cross_encoder']
|
598 |
+
scored_documents = await run_in_threadpool(
|
599 |
+
rerank_documents,
|
600 |
+
query_text,
|
601 |
+
document_ids,
|
602 |
+
document_texts,
|
603 |
+
cross_encoder
|
604 |
+
)
|
605 |
+
|
606 |
+
# Process documents and generate answer
|
607 |
+
async with asyncio.TaskGroup() as tg:
|
608 |
+
# Extract entities in parallel
|
609 |
+
entities_task = tg.create_task(
|
610 |
+
run_in_threadpool(
|
611 |
+
extract_entities_batch,
|
612 |
+
[query_text] + [doc[2] for doc in scored_documents[:3]],
|
613 |
+
models['bio_tokenizer'],
|
614 |
+
models['bio_model']
|
615 |
+
)
|
616 |
+
)
|
617 |
+
|
618 |
+
# Extract relevant portions
|
619 |
+
portions_task = tg.create_task(
|
620 |
+
run_in_threadpool(
|
621 |
+
extract_relevant_portions,
|
622 |
+
[doc[2] for doc in scored_documents[:3]],
|
623 |
+
query_text,
|
624 |
+
models['bio_tokenizer'],
|
625 |
+
models['bio_model']
|
626 |
+
)
|
627 |
+
)
|
628 |
+
|
629 |
+
entities = (await entities_task)[0] # First item is query entities
|
630 |
+
relevant_portions = await portions_task
|
631 |
+
|
632 |
+
# Flatten and process portions
|
633 |
+
flattened_portions = []
|
634 |
+
for doc_portions in relevant_portions.values():
|
635 |
+
flattened_portions.extend(doc_portions)
|
636 |
+
|
637 |
+
unique_selected_parts = list(dict.fromkeys(flattened_portions))
|
638 |
combined_parts = " ".join(unique_selected_parts)
|
639 |
+
|
640 |
+
# Enhance passage and create prompt
|
641 |
passage = enhance_passage_with_entities(combined_parts, entities)
|
642 |
prompt = create_prompt(query_text, passage)
|
643 |
+
|
644 |
+
# Generate answer
|
645 |
+
answer = await run_in_threadpool(
|
646 |
+
generate_answer,
|
647 |
+
prompt,
|
648 |
+
models['llm_tokenizer'],
|
649 |
+
models['llm_model']
|
650 |
+
)
|
651 |
+
|
652 |
+
# Process answer
|
653 |
answer_part = answer.split("Answer:")[-1].strip()
|
654 |
+
cleaned_answer = await run_in_threadpool(remove_answer_prefix, answer_part)
|
655 |
+
final_answer = await run_in_threadpool(remove_incomplete_sentence, cleaned_answer)
|
656 |
+
|
657 |
+
# Handle translation if needed
|
658 |
if language_code == 0:
|
659 |
+
final_answer = await run_in_threadpool(translate_en_to_ar, final_answer)
|
660 |
+
|
661 |
+
# Calculate response time
|
662 |
+
end_time = asyncio.get_event_loop().time()
|
663 |
+
response_time = end_time - start_time
|
664 |
+
|
665 |
if final_answer:
|
666 |
+
print(f"Answer generated in {response_time:.2f} seconds")
|
667 |
print(final_answer)
|
668 |
+
|
669 |
+
return {
|
670 |
+
"response": f"I hope this answers your question: {final_answer}",
|
671 |
+
"success": True,
|
672 |
+
"response_time": response_time
|
673 |
+
}
|
674 |
else:
|
675 |
+
return {
|
676 |
+
"response": "Sorry, I can't help with that.",
|
677 |
+
"success": False,
|
678 |
+
"response_time": response_time
|
679 |
+
}
|
680 |
+
|
681 |
except Exception as e:
|
682 |
+
print(f"Error in chat endpoint: {str(e)}")
|
683 |
raise HTTPException(status_code=500, detail=str(e))
|
684 |
|
685 |
@app.post("/api/resources")
|