Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,779 Bytes
6c02161 b2d8a8c 15059e3 b0cba66 d305eb7 c7840c9 51043fd b2d8a8c 6b78ccb 018f313 6b78ccb 2936f7d 6b78ccb 98d025d 15059e3 018f313 d305eb7 c7840c9 d305eb7 c022c1a 472d32d c022c1a 9df60ba c022c1a 15059e3 018f313 c022c1a 9df60ba d305eb7 472d32d 22e7225 018f313 d305eb7 018f313 6b78ccb c7840c9 d305eb7 c7840c9 01bd804 649509e c7840c9 018f313 dbb603e 0be5f10 c7840c9 ac7355c d305eb7 0be5f10 649509e fd94d7e 98e6e29 0d14459 a96918a 0be5f10 d21cf89 018f313 fa7e403 a96918a d305eb7 018f313 c7840c9 018f313 c7840c9 858dd79 0be5f10 d305eb7 0be5f10 17a37fd 0be5f10 858dd79 dc68674 a96918a 018f313 24411d3 e511f97 018f313 a8e0adc a96918a 0be5f10 d305eb7 71f5120 0be5f10 c7840c9 4c600ac 71f5120 a8e0adc 71f5120 d305eb7 71f5120 d305eb7 71f5120 d305eb7 71f5120 27c2637 453b42e c2ab7de 71f5120 605b95a 71f5120 ab1c740 c11e52c d305eb7 c11e52c e47e5a0 c11e52c 71f5120 70fd33b 9ec1bce 71f5120 d305eb7 310cc12 0be5f10 649509e c7840c9 018f313 649509e c7840c9 24411d3 dce5b4e 649509e b6479c7 24411d3 649509e 24d1064 c7840c9 24d1064 24411d3 d305eb7 4c600ac c7840c9 d305eb7 649509e 15059e3 f2f690b c11e52c a8a1233 f2f690b 649509e 3fe10eb 649509e fd82b48 649509e 15059e3 85b4489 15059e3 24411d3 ce8b1dc 649509e c7840c9 9595ebf 24411d3 d305eb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import torch
import sys
import uuid
import re
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'
# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./xcodec_mini_infer"
)
# Change to the "inference" directory
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
# don't change above code
import argparse
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream
device = "cuda:0"
# Load model and tokenizer outside the generation function (load once)
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s1-7B-anneal-en-cot", # "m-a-p/YuE-s1-7B-anneal-en-icl",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(device)
model.eval()
print("Model loaded.")
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(basic_model_config)
# Load codec model
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.eval()
print("Codec model loaded.")
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
# Convert to mono
audio = torch.mean(audio, dim=0, keepdim=True)
# Resample if needed
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
pattern = r"\[(\w+)\]\s*(.*?)(?=\s*\n\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
@spaces.GPU(duration=178)
def generate_music(
genre_txt=None,
lyrics_txt=None,
run_n_segments=2,
max_new_tokens=45,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
cuda_idx=0,
rescale=False,
progress=gr.Progress()
):
"""
Generates music based on given genre and lyrics, optionally using an audio prompt.
This function orchestrates the music generation process, including prompt formatting,
model inference, and audio post-processing.
"""
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError("Please provide an audio prompt file when 'Use Audio Prompt' is enabled!")
cuda_idx = cuda_idx
max_new_tokens = int(max_new_tokens * (100/run_n_segments))
with tempfile.TemporaryDirectory() as output_dir:
stage1_output_dir = os.path.join(output_dir, f"stage1")
os.makedirs(stage1_output_dir, exist_ok=True)
stage1_output_set = []
genres = genre_txt.strip()
lyrics = split_lyrics(lyrics_txt + "\n")
# instruction
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics
random_id = uuid.uuid4()
raw_output = None
# Decoding config
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
# Format text prompt
run_n_segments = min(run_n_segments, len(lyrics)) + 1
def generator():
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <= 1 else 1.2 # Guidance scale adjusted based on segment index
if i == 0:
continue
if i == 1:
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
# Format audio prompt
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [
mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize(
"[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
# Use window slicing in case output sequence exceeds the context of model
max_context = 16384 - max_new_tokens - 1
if input_ids.shape[-1] > max_context:
print(
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
input_ids = input_ids[:, -(max_context):]
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
guidance_scale=guidance_scale,
use_cache=True,
num_beams = 1
)
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
return raw_output
raw_output = generator()
# save raw output and check sanity
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
if len(soa_idx) != len(eoa_idx):
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
vocals = []
instrumentals = []
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)] # Ensure even length for reshape
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{random_id}".replace('.', '@') + '.npy')
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{random_id}".replace('.', '@') + '.npy')
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set.append(vocal_save_path)
stage1_output_set.append(inst_save_path)
print("Converting to Audio...")
# convert audio tokens to audio
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
folder_path = os.path.dirname(path)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# reconstruct tracks
recons_output_dir = os.path.join(output_dir, "recons")
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks = []
for npy in stage1_output_set:
codec_result = np.load(npy)
decodec_rlt = []
with torch.no_grad():
decoded_waveform = codec_model.decode(
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
decoded_waveform = decoded_waveform.cpu().squeeze(0)
decodec_rlt.append(torch.as_tensor(decoded_waveform))
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") # Save as mp3 for gradio
tracks.append(save_path)
save_audio(decodec_rlt, save_path, 16000)
# mix tracks
for inst_path in tracks:
try:
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) and 'instrumental' in inst_path:
# find pair
vocal_path = inst_path.replace('instrumental', 'vocal')
if not os.path.exists(vocal_path):
continue
# mix
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
vocal_stem, sr = sf.read(vocal_path)
instrumental_stem, _ = sf.read(inst_path)
mix_stem = (vocal_stem + instrumental_stem) / 1
return (sr, (mix_stem * 32767).astype(np.int16)), (sr, (vocal_stem * 32767).astype(np.int16)), (sr, (instrumental_stem * 32767).astype(np.int16))
except Exception as e:
print(e)
return None, None, None
# Gradio Interface
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
use_audio_prompt = gr.Checkbox(label="Use Audio Prompt ?", value=False)
audio_prompt_input = gr.Audio(type="filepath", label="Audio Prompt (Optional)")
with gr.Column():
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=45, step=1, value=30, interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Mixed Audio Result")
with gr.Accordion(label="Vocal and Instrumental Result", open=False):
vocal_out = gr.Audio(label="Vocal Audio")
instrumental_out = gr.Audio(label="Instrumental Audio")
# When the "Submit" button is clicked, pass the additional audio-related inputs to the function.
submit_btn.click(
fn=generate_music,
inputs=[
genre_txt,
lyrics_txt,
num_segments,
max_new_tokens,
use_audio_prompt,
audio_prompt_input,
],
outputs=[music_out, vocal_out, instrumental_out]
)
# Examples updated to only include text inputs
gr.Examples(
examples=[
["rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear.
[chorus]
Walking through the streets, beats inside my head
Every step I take, closer to the bread
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
[verse]
Late nights grinding, writing down these rhymes
Clock is ticking fast, can't afford to waste time
Haters gonna hate, but I brush it off
Turn the negativity into something strong
Mama working hard, wanna make her proud"""]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out, vocal_out, instrumental_out],
cache_examples=True,
cache_mode="eager",
fn=generate_music
)
gr.Examples(
examples=[
[ "inspiring female uplifting pop airy vocal electronic bright vocal vocal",
"""[verse]
Staring at the sunset, colors paint the sky
Thoughts of you keep swirling, can't deny
I know I let you down, I made mistakes
But I'm here to mend the heart I didn't break
[chorus]
Every road you take, I'll be one step behind
Every dream you chase, I'm reaching for the light
You can't fight this feeling now
I won't back down
I'm the whisper in the wind, the shadow by your side
The warmth you feel within when you can't hide
You know you can't deny it now
I won't back down
[verse]
They might say I'm foolish, chasing after you
But they don't feel this love the way we do
My heart beats only for you, can't you see?
I won't let you slip away from me
"""
],
[
"Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar",
"""[verse]
Step back cause I'll ignite
Won't quit without a fight
No escape, gear up, it's a fierce fight
Brace up, raise your hands up and light
Fear the might. Step back cause I'll ignite
Won't back down without a fight
It keeps going and going, the heat is on.
[chorus]
Hot flame. Hot flame.
Still here, still holding aim
I don't care if I'm bright or dim: nah.
I've made it clear, I'll make it again
All I want is my crew and my gain.
I'm feeling wild, got a bit of rebel style.
Locked inside my mind, hot flame.
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out, vocal_out, instrumental_out],
cache_examples=True,
cache_mode="lazy",
fn=generate_music
)
gr.Markdown("## Call for Contributions\nIf you find this space interesting please 💖 this space and feel free to contribute.\n### TODO:\n1. [Aeromamba](https://huggingface.co/innova-ai/AEROMamba) for output enhancement.")
demo.queue().launch(show_error=True) |