Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -67,8 +67,8 @@ import time
|
|
67 |
import copy
|
68 |
from collections import Counter
|
69 |
from models.soundstream_hubert_new import SoundStream
|
70 |
-
from vocoder import build_codec_model, process_audio
|
71 |
-
from post_process_audio import replace_low_freq_with_energy_matched
|
72 |
|
73 |
device = "cuda:0"
|
74 |
|
@@ -82,9 +82,9 @@ model.eval()
|
|
82 |
|
83 |
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
|
84 |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
85 |
-
config_path = './xcodec_mini_infer/decoders/config.yaml'
|
86 |
-
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
|
87 |
-
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
|
88 |
|
89 |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
90 |
|
@@ -97,14 +97,15 @@ codec_model.load_state_dict(parameter_dict['codec_model'])
|
|
97 |
# codec_model = torch.compile(codec_model)
|
98 |
codec_model.eval()
|
99 |
|
100 |
-
# Preload and compile vocoders
|
101 |
-
#
|
102 |
-
#
|
103 |
-
#
|
104 |
-
#
|
105 |
-
#
|
106 |
-
#
|
107 |
-
#
|
|
|
108 |
|
109 |
@spaces.GPU(duration=120)
|
110 |
def generate_music(
|
@@ -245,8 +246,8 @@ def generate_music(
|
|
245 |
if len(soa_idx) != len(eoa_idx):
|
246 |
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
247 |
|
248 |
-
|
249 |
-
|
250 |
range_begin = 1 if use_audio_prompt else 0
|
251 |
for i in range(range_begin, len(soa_idx)):
|
252 |
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
|
@@ -254,63 +255,27 @@ def generate_music(
|
|
254 |
codec_ids = codec_ids[1:]
|
255 |
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
256 |
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
|
257 |
-
|
258 |
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
print("Converting to Audio...")
|
265 |
-
|
266 |
-
# convert audio tokens to audio
|
267 |
-
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
268 |
-
folder_path = os.path.dirname(path)
|
269 |
-
if not os.path.exists(folder_path):
|
270 |
-
os.makedirs(folder_path)
|
271 |
-
limit = 0.99
|
272 |
-
max_val = wav.abs().max()
|
273 |
-
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
274 |
-
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
275 |
-
|
276 |
-
# reconstruct tracks
|
277 |
-
recons_output_dir = os.path.join(output_dir, "recons")
|
278 |
-
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
279 |
-
os.makedirs(recons_mix_dir, exist_ok=True)
|
280 |
-
|
281 |
-
# Decode vocals
|
282 |
-
with torch.no_grad():
|
283 |
-
decoded_vocals_waveform = codec_model.decode(
|
284 |
-
torch.as_tensor(vocals_codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
|
285 |
-
decoded_vocals_waveform = decoded_vocals_waveform.cpu().squeeze(0)
|
286 |
|
287 |
-
#
|
288 |
with torch.no_grad():
|
289 |
-
|
290 |
-
torch.as_tensor(
|
291 |
-
|
|
|
|
|
|
|
292 |
|
293 |
-
|
294 |
-
|
|
|
295 |
|
296 |
-
|
297 |
-
instrumental_sr = 16000
|
298 |
-
mixed_sr = 16000
|
299 |
-
|
300 |
-
# added scaling to the audio
|
301 |
-
limit = 0.99
|
302 |
-
max_val = np.max(np.abs(mixed_waveform))
|
303 |
-
mixed_waveform = mixed_waveform * min(limit / max_val, 1)
|
304 |
|
305 |
-
max_val = np.max(np.abs(decoded_vocals_waveform))
|
306 |
-
decoded_vocals_waveform = decoded_vocals_waveform * min(limit/ max_val, 1)
|
307 |
-
|
308 |
-
max_val = np.max(np.abs(decoded_instrumentals_waveform))
|
309 |
-
decoded_instrumentals_waveform = decoded_instrumentals_waveform * min(limit/max_val,1)
|
310 |
-
|
311 |
-
print("All process Done")
|
312 |
-
|
313 |
-
return (mixed_sr, mixed_waveform.numpy()), (vocal_sr, decoded_vocals_waveform.numpy()), (instrumental_sr, decoded_instrumentals_waveform.numpy())
|
314 |
|
315 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
|
316 |
# Execute the command
|
@@ -351,11 +316,11 @@ with gr.Blocks() as demo:
|
|
351 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
352 |
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
|
353 |
submit_btn = gr.Button("Submit")
|
354 |
-
music_out_mix = gr.Audio(label="Final Audio Result", interactive=False)
|
355 |
-
with gr.Accordion(label="Vocal and Instrumental Result", open=False):
|
356 |
-
music_out_vocals = gr.Audio(label="Vocal Audio Result", interactive=False)
|
357 |
-
music_out_instrumental = gr.Audio(label="Instrumental Audio Result", interactive=False)
|
358 |
|
|
|
|
|
|
|
|
|
359 |
|
360 |
gr.Examples(
|
361 |
examples=[
|
@@ -401,17 +366,16 @@ Living out my dreams with this mic and a deal
|
|
401 |
]
|
402 |
],
|
403 |
inputs=[genre_txt, lyrics_txt],
|
404 |
-
outputs=[
|
405 |
cache_examples=True,
|
406 |
cache_mode="eager",
|
407 |
fn=infer
|
408 |
)
|
409 |
|
410 |
-
gr.Markdown("## We are actively working on improving YuE, and welcome community contributions! Feel free to submit PRs to enhance the model and demo.")
|
411 |
-
|
412 |
submit_btn.click(
|
413 |
fn=infer,
|
414 |
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
415 |
-
outputs=[
|
416 |
)
|
|
|
417 |
demo.queue().launch(show_error=True)
|
|
|
67 |
import copy
|
68 |
from collections import Counter
|
69 |
from models.soundstream_hubert_new import SoundStream
|
70 |
+
#from vocoder import build_codec_model, process_audio # removed vocoder
|
71 |
+
#from post_process_audio import replace_low_freq_with_energy_matched # removed post process
|
72 |
|
73 |
device = "cuda:0"
|
74 |
|
|
|
82 |
|
83 |
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
|
84 |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
85 |
+
#config_path = './xcodec_mini_infer/decoders/config.yaml' # removed vocoder
|
86 |
+
#vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth' # removed vocoder
|
87 |
+
#inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth' # removed vocoder
|
88 |
|
89 |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
90 |
|
|
|
97 |
# codec_model = torch.compile(codec_model)
|
98 |
codec_model.eval()
|
99 |
|
100 |
+
# Preload and compile vocoders # removed vocoder
|
101 |
+
#vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
102 |
+
#vocal_decoder.to(device)
|
103 |
+
#inst_decoder.to(device)
|
104 |
+
#vocal_decoder = torch.compile(vocal_decoder)
|
105 |
+
#inst_decoder = torch.compile(inst_decoder)
|
106 |
+
#vocal_decoder.eval()
|
107 |
+
#inst_decoder.eval()
|
108 |
+
|
109 |
|
110 |
@spaces.GPU(duration=120)
|
111 |
def generate_music(
|
|
|
246 |
if len(soa_idx) != len(eoa_idx):
|
247 |
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
248 |
|
249 |
+
vocals = []
|
250 |
+
instrumentals = []
|
251 |
range_begin = 1 if use_audio_prompt else 0
|
252 |
for i in range(range_begin, len(soa_idx)):
|
253 |
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
|
|
|
255 |
codec_ids = codec_ids[1:]
|
256 |
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
257 |
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
|
258 |
+
vocals.append(vocals_ids)
|
259 |
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
|
260 |
+
instrumentals.append(instrumentals_ids)
|
261 |
+
vocals = np.concatenate(vocals, axis=1)
|
262 |
+
instrumentals = np.concatenate(instrumentals, axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
+
#convert audio tokens to audio
|
265 |
with torch.no_grad():
|
266 |
+
decoded_vocals = codec_model.decode(
|
267 |
+
torch.as_tensor(vocals.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
|
268 |
+
device))
|
269 |
+
decoded_instrumentals = codec_model.decode(
|
270 |
+
torch.as_tensor(instrumentals.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
|
271 |
+
device))
|
272 |
|
273 |
+
decoded_vocals = decoded_vocals.cpu().squeeze(0)
|
274 |
+
decoded_instrumentals = decoded_instrumentals.cpu().squeeze(0)
|
275 |
+
mixed_audio = (decoded_vocals + decoded_instrumentals)/2
|
276 |
|
277 |
+
return (16000, mixed_audio.numpy()), (16000, decoded_vocals.numpy()), (16000, decoded_instrumentals.numpy())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
|
281 |
# Execute the command
|
|
|
316 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
317 |
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
|
318 |
submit_btn = gr.Button("Submit")
|
|
|
|
|
|
|
|
|
319 |
|
320 |
+
music_out = gr.Audio(label="Mixed Audio Result")
|
321 |
+
with gr.Accordion(label="Vocal and Instrumental Result", open=False):
|
322 |
+
vocal_out = gr.Audio(label="Vocal Audio")
|
323 |
+
instrumental_out = gr.Audio(label="Instrumental Audio")
|
324 |
|
325 |
gr.Examples(
|
326 |
examples=[
|
|
|
366 |
]
|
367 |
],
|
368 |
inputs=[genre_txt, lyrics_txt],
|
369 |
+
outputs=[music_out, vocal_out, instrumental_out],
|
370 |
cache_examples=True,
|
371 |
cache_mode="eager",
|
372 |
fn=infer
|
373 |
)
|
374 |
|
|
|
|
|
375 |
submit_btn.click(
|
376 |
fn=infer,
|
377 |
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
378 |
+
outputs=[music_out, vocal_out, instrumental_out]
|
379 |
)
|
380 |
+
gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")
|
381 |
demo.queue().launch(show_error=True)
|