KingNish commited on
Commit
24d1064
·
verified ·
1 Parent(s): 9ad37ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -279
app.py CHANGED
@@ -67,206 +67,44 @@ import time
67
  import copy
68
  from collections import Counter
69
  from models.soundstream_hubert_new import SoundStream
70
- from vocoder import build_codec_model, process_audio
71
- from post_process_audio import replace_low_freq_with_energy_matched
72
 
73
  device = "cuda:0"
74
 
75
- stage2_model = "m-a-p/YuE-s2-1B-general"
76
- model_stage2 = AutoModelForCausalLM.from_pretrained(
77
- stage2_model,
78
- torch_dtype=torch.float16,
79
- attn_implementation="flash_attention_2"
80
- ).to(device)
81
- model_stage2.eval()
82
-
83
  model = AutoModelForCausalLM.from_pretrained(
84
  "m-a-p/YuE-s1-7B-anneal-en-cot",
85
  torch_dtype=torch.float16,
86
  attn_implementation="flash_attention_2",
 
87
  ).to(device)
88
  model.eval()
89
 
90
  basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
91
  resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
92
- config_path = './xcodec_mini_infer/decoders/config.yaml'
93
- vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
94
- inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
95
 
96
  mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
97
 
98
  codectool = CodecManipulator("xcodec", 0, 1)
99
- codectool_stage2 = CodecManipulator("xcodec", 0, 8)
100
  model_config = OmegaConf.load(basic_model_config)
101
  # Load codec model
102
  codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
103
  parameter_dict = torch.load(resume_path, map_location='cpu')
104
  codec_model.load_state_dict(parameter_dict['codec_model'])
 
105
  codec_model.eval()
106
 
107
- # Preload and compile vocoders
108
- vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
109
- vocal_decoder.to(device)
110
- inst_decoder.to(device)
111
- vocal_decoder.eval()
112
- inst_decoder.eval()
113
-
114
-
115
- class BlockTokenRangeProcessor(LogitsProcessor):
116
- def __init__(self, start_id, end_id):
117
- self.blocked_token_ids = list(range(start_id, end_id))
118
-
119
- def __call__(self, input_ids, scores):
120
- scores[:, self.blocked_token_ids] = -float("inf")
121
- return scores
122
-
123
- def load_audio_mono(filepath, sampling_rate=16000):
124
- audio, sr = torchaudio.load(filepath)
125
- # Convert to mono
126
- audio = torch.mean(audio, dim=0, keepdim=True)
127
- # Resample if needed
128
- if sr != sampling_rate:
129
- resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
130
- audio = resampler(audio)
131
- return audio
132
-
133
- def split_lyrics(lyrics: str):
134
- pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
135
- segments = re.findall(pattern, lyrics, re.DOTALL)
136
- structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
137
- return structured_lyrics
138
-
139
-
140
- def stage2_generate(model, prompt, batch_size=1): # set batch_size=1 for gradio demo
141
- codec_ids = codectool.unflatten(prompt, n_quantizer=1)
142
- codec_ids = codectool.offset_tok_ids(
143
- codec_ids,
144
- global_offset=codectool.global_offset,
145
- codebook_size=codectool.codebook_size,
146
- num_codebooks=codectool.num_codebooks,
147
- ).astype(np.int32)
148
-
149
- # Prepare prompt_ids based on batch size or single input
150
- if batch_size > 1:
151
- codec_list = []
152
- for i in range(batch_size):
153
- idx_begin = i * 300
154
- idx_end = (i + 1) * 300
155
- codec_list.append(codec_ids[:, idx_begin:idx_end])
156
-
157
- codec_ids = np.concatenate(codec_list, axis=0)
158
- prompt_ids = np.concatenate(
159
- [
160
- np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
161
- codec_ids,
162
- np.tile([mmtokenizer.stage_2], (batch_size, 1)),
163
- ],
164
- axis=1
165
- )
166
- else:
167
- prompt_ids = np.concatenate([
168
- np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
169
- codec_ids.flatten(), # Flatten the 2D array to 1D
170
- np.array([mmtokenizer.stage_2])
171
- ]).astype(np.int32)
172
- prompt_ids = prompt_ids[np.newaxis, ...]
173
-
174
- codec_ids = torch.as_tensor(codec_ids).to(device)
175
- prompt_ids = torch.as_tensor(prompt_ids).to(device)
176
- len_prompt = prompt_ids.shape[-1]
177
-
178
- block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)])
179
-
180
- # Teacher forcing generate loop
181
- for frames_idx in range(codec_ids.shape[1]):
182
- cb0 = codec_ids[:, frames_idx:frames_idx+1]
183
- prompt_ids = torch.cat([prompt_ids, cb0], dim=1)
184
- input_ids = prompt_ids
185
-
186
- with torch.no_grad():
187
- stage2_output = model.generate(input_ids=input_ids,
188
- min_new_tokens=7,
189
- max_new_tokens=7,
190
- eos_token_id=mmtokenizer.eoa,
191
- pad_token_id=mmtokenizer.eoa,
192
- logits_processor=block_list,
193
- )
194
-
195
- assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1]-prompt_ids.shape[1]}"
196
- prompt_ids = stage2_output
197
-
198
- # Return output based on batch size
199
- if batch_size > 1:
200
- output = prompt_ids.cpu().numpy()[:, len_prompt:]
201
- output_list = [output[i] for i in range(batch_size)]
202
- output = np.concatenate(output_list, axis=0)
203
- else:
204
- output = prompt_ids[0].cpu().numpy()[len_prompt:]
205
-
206
- return output
207
-
208
- def stage2_inference(model, stage1_output_set, stage2_output_dir, batch_size=1): # set batch_size=1 for gradio demo
209
- stage2_result = []
210
- for i in tqdm(range(len(stage1_output_set))):
211
- output_filename = os.path.join(stage2_output_dir, os.path.basename(stage1_output_set[i]))
212
-
213
- if os.path.exists(output_filename):
214
- print(f'{output_filename} stage2 has done.')
215
- continue
216
-
217
- # Load the prompt
218
- prompt = np.load(stage1_output_set[i]).astype(np.int32)
219
-
220
- # Only accept 6s segments
221
- output_duration = prompt.shape[-1] // 50 // 6 * 6
222
- num_batch = output_duration // 6
223
-
224
- if output_duration <= 0:
225
- print(f'{output_filename} stage1 output is too short, skipping stage2.')
226
- continue
227
-
228
- if num_batch <= batch_size:
229
- # If num_batch is less than or equal to batch_size, we can infer the entire prompt at once
230
- output = stage2_generate(model, prompt[:, :output_duration*50], batch_size=num_batch)
231
- else:
232
- # If num_batch is greater than batch_size, process in chunks of batch_size
233
- segments = []
234
- num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
235
-
236
- for seg in range(num_segments):
237
- start_idx = seg * batch_size * 300
238
- # Ensure the end_idx does not exceed the available length
239
- end_idx = min((seg + 1) * batch_size * 300, output_duration*50) # Adjust the last segment
240
- current_batch_size = batch_size if seg != num_segments-1 or num_batch % batch_size == 0 else num_batch % batch_size
241
- segment = stage2_generate(
242
- model,
243
- prompt[:, start_idx:end_idx],
244
- batch_size=current_batch_size
245
- )
246
- segments.append(segment)
247
-
248
- # Concatenate all the segments
249
- output = np.concatenate(segments, axis=0)
250
-
251
- # Process the ending part of the prompt
252
- if output_duration*50 != prompt.shape[-1]:
253
- ending = stage2_generate(model, prompt[:, output_duration*50:], batch_size=1)
254
- output = np.concatenate([output, ending], axis=0)
255
- output = codectool_stage2.ids2npy(output)
256
-
257
- # Fix invalid codes (a dirty solution, which may harm the quality of audio)
258
- # We are trying to find better one
259
- fixed_output = copy.deepcopy(output)
260
- for i, line in enumerate(output):
261
- for j, element in enumerate(line):
262
- if element < 0 or element > 1023:
263
- counter = Counter(line)
264
- most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
265
- fixed_output[i, j] = most_frequant
266
- # save output
267
- np.save(output_filename, fixed_output)
268
- stage2_result.append(output_filename)
269
- return stage2_result
270
 
271
 
272
  @spaces.GPU(duration=120)
@@ -289,10 +127,33 @@ def generate_music(
289
 
290
  with tempfile.TemporaryDirectory() as output_dir:
291
  stage1_output_dir = os.path.join(output_dir, f"stage1")
292
- stage2_output_dir = stage1_output_dir.replace('stage1', 'stage2')
293
  os.makedirs(stage1_output_dir, exist_ok=True)
294
- os.makedirs(stage2_output_dir, exist_ok=True)
295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296
  stage1_output_set = []
297
 
298
  genres = genre_txt.strip()
@@ -407,10 +268,6 @@ def generate_music(
407
  stage1_output_set.append(vocal_save_path)
408
  stage1_output_set.append(inst_save_path)
409
 
410
- print("Stage 2 inference...")
411
- stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=1) # set batch_size=1 for gradio demo
412
- print('Stage 2 DONE.\n')
413
-
414
  print("Converting to Audio...")
415
 
416
  # convert audio tokens to audio
@@ -423,14 +280,14 @@ def generate_music(
423
  wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
424
  torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
425
 
426
- # reconstruct tracks from stage 1
427
- recons_output_dir = os.path.join(output_dir, "recons_stage1") # changed folder name to recons_stage1
428
  recons_mix_dir = os.path.join(recons_output_dir, 'mix')
429
  os.makedirs(recons_mix_dir, exist_ok=True)
430
- tracks_stage1 = [] # changed variable name to tracks_stage1
431
  for npy in stage1_output_set:
432
  codec_result = np.load(npy)
433
- decodec_rlt=[]
434
  with torch.no_grad():
435
  decoded_waveform = codec_model.decode(
436
  torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
@@ -438,61 +295,11 @@ def generate_music(
438
  decoded_waveform = decoded_waveform.cpu().squeeze(0)
439
  decodec_rlt.append(torch.as_tensor(decoded_waveform))
440
  decodec_rlt = torch.cat(decodec_rlt, dim=-1)
441
- save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + "_stage1.mp3") # changed filename to include _stage1
442
- tracks_stage1.append(save_path) # changed variable name to tracks_stage1
443
  save_audio(decodec_rlt, save_path, 16000)
444
-
445
- # reconstruct tracks from stage 2 and vocoder
446
- recons_output_dir = os.path.join(output_dir, "recons_stage2_vocoder") # changed folder name to recons_stage2_vocoder
447
- recons_mix_dir = os.path.join(recons_output_dir, 'mix')
448
- os.makedirs(recons_mix_dir, exist_ok=True)
449
- tracks_stage2_vocoder = [] # changed variable name to tracks_stage2_vocoder
450
- vocoder_stems_dir = os.path.join(recons_output_dir, 'stems') # vocoder output stems in recons_stage2_vocoder
451
- os.makedirs(vocoder_stems_dir, exist_ok=True)
452
-
453
- vocal_output = None # initialize for mix error handling
454
- instrumental_output = None # initialize for mix error handling
455
-
456
- for npy in stage2_result:
457
- if 'instrumental' in npy:
458
- # Process instrumental
459
- instrumental_output = process_audio(
460
- npy,
461
- os.path.join(vocoder_stems_dir, 'instrumental.mp3'), # vocoder output to vocoder_stems_dir
462
- rescale,
463
- None, # Removed args, use default vocoder args
464
- inst_decoder,
465
- codec_model
466
- )
467
- else:
468
- # Process vocal
469
- vocal_output = process_audio(
470
- npy,
471
- os.path.join(vocoder_stems_dir, 'vocal.mp3'), # vocoder output to vocoder_stems_dir
472
- rescale,
473
- None, # Removed args, use default vocoder args
474
- vocal_decoder,
475
- codec_model
476
- )
477
-
478
- # mix tracks from vocoder output
479
- try:
480
- mix_output = instrumental_output + vocal_output
481
- vocoder_mix = os.path.join(recons_mix_dir, 'mixed_stage2_vocoder.mp3') # mixed output in recons_stage2_vocoder, changed filename
482
- save_audio(mix_output, vocoder_mix, 44100, rescale)
483
- print(f"Created mix: {vocoder_mix}")
484
- tracks_stage2_vocoder.append(vocoder_mix) # add mixed vocoder output path
485
- except RuntimeError as e:
486
- print(e)
487
- vocoder_mix = None # set to None if mix failed
488
- print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape if instrumental_output is not None else 'None'}, vocal: {vocal_output.shape if vocal_output is not None else 'None'}")
489
-
490
-
491
- # mix tracks from stage 1
492
- mixed_stage1_path = None
493
- vocal_stage1_path = None
494
- instrumental_stage1_path = None
495
- for inst_path in tracks_stage1: # changed variable name to tracks_stage1
496
  try:
497
  if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
498
  and 'instrumental' in inst_path:
@@ -501,45 +308,17 @@ def generate_music(
501
  if not os.path.exists(vocal_path):
502
  continue
503
  # mix
504
- recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental_stage1', 'mixed_stage1')) # changed mixed filename
505
- vocal_stem, sr = sf.read(vocal_path)
506
- instrumental_stem, _ = sf.read(inst_path)
507
  mix_stem = (vocal_stem + instrumental_stem) / 1
508
-
509
- sf.write(recons_mix, mix_stem, sr)
510
- mixed_stage1_path = recons_mix # store mixed stage 1 path
511
- vocal_stage1_path = vocal_path # store vocal stage 1 path
512
- instrumental_stage1_path = inst_path # store instrumental stage 1 path
513
-
514
  except Exception as e:
515
  print(e)
 
516
 
517
 
518
- # Post process - skip post process for gradio to simplify.
519
- # recons_mix_final_path = os.path.join(output_dir, os.path.basename(mixed_stage1_path).replace('_stage1', '_final')) # final output path
520
- # replace_low_freq_with_energy_matched(
521
- # a_file=mixed_stage1_path, # 16kHz
522
- # b_file=vocoder_mix, # 48kHz
523
- # c_file=recons_mix_final_path,
524
- # cutoff_freq=5500.0
525
- # )
526
-
527
-
528
- if vocoder_mix is not None: # return vocoder mix if successful
529
- mixed_audio_data, sr_vocoder_mix = sf.read(vocoder_mix)
530
- vocal_audio_data = None # stage 2 vocoder stems are not mixed and returned in this demo, set to None
531
- instrumental_audio_data = None # stage 2 vocoder stems are not mixed and returned in this demo, set to None
532
- return (sr_vocoder_mix, (mixed_audio_data * 32767).astype(np.int16)), vocal_audio_data, instrumental_audio_data
533
- elif mixed_stage1_path is not None: # if vocoder failed, return stage 1 mix
534
- mixed_audio_data_stage1, sr_stage1_mix = sf.read(mixed_stage1_path)
535
- vocal_audio_data_stage1, sr_vocal_stage1 = sf.read(vocal_stage1_path)
536
- instrumental_audio_data_stage1, sr_inst_stage1 = sf.read(instrumental_stage1_path)
537
- return (sr_stage1_mix, (mixed_audio_data_stage1 * 32767).astype(np.int16)), (sr_vocal_stage1, (vocal_audio_data_stage1 * 32767).astype(np.int16)), (sr_inst_stage1, (instrumental_audio_data_stage1 * 32767).astype(np.int16))
538
- else: # if both failed, return None
539
- return None, None, None
540
-
541
-
542
- def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=5):
543
  # Execute the command
544
  try:
545
  mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
@@ -579,10 +358,10 @@ with gr.Blocks() as demo:
579
  max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
580
  submit_btn = gr.Button("Submit")
581
 
582
- music_out = gr.Audio(label="Mixed Audio Result (Stage 2 + Vocoder)")
583
- with gr.Accordion(label="Stage 1 Vocal and Instrumental Result", open=False):
584
- vocal_out = gr.Audio(label="Vocal Audio (Stage 1)")
585
- instrumental_out = gr.Audio(label="Instrumental Audio (Stage 1)")
586
 
587
  gr.Examples(
588
  examples=[
 
67
  import copy
68
  from collections import Counter
69
  from models.soundstream_hubert_new import SoundStream
70
+ #from vocoder import build_codec_model, process_audio # removed vocoder
71
+ #from post_process_audio import replace_low_freq_with_energy_matched # removed post process
72
 
73
  device = "cuda:0"
74
 
 
 
 
 
 
 
 
 
75
  model = AutoModelForCausalLM.from_pretrained(
76
  "m-a-p/YuE-s1-7B-anneal-en-cot",
77
  torch_dtype=torch.float16,
78
  attn_implementation="flash_attention_2",
79
+ # low_cpu_mem_usage=True,
80
  ).to(device)
81
  model.eval()
82
 
83
  basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
84
  resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
85
+ #config_path = './xcodec_mini_infer/decoders/config.yaml' # removed vocoder
86
+ #vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth' # removed vocoder
87
+ #inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth' # removed vocoder
88
 
89
  mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
90
 
91
  codectool = CodecManipulator("xcodec", 0, 1)
 
92
  model_config = OmegaConf.load(basic_model_config)
93
  # Load codec model
94
  codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
95
  parameter_dict = torch.load(resume_path, map_location='cpu')
96
  codec_model.load_state_dict(parameter_dict['codec_model'])
97
+ # codec_model = torch.compile(codec_model)
98
  codec_model.eval()
99
 
100
+ # Preload and compile vocoders # removed vocoder
101
+ #vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
102
+ #vocal_decoder.to(device)
103
+ #inst_decoder.to(device)
104
+ #vocal_decoder = torch.compile(vocal_decoder)
105
+ #inst_decoder = torch.compile(inst_decoder)
106
+ #vocal_decoder.eval()
107
+ #inst_decoder.eval()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
 
110
  @spaces.GPU(duration=120)
 
127
 
128
  with tempfile.TemporaryDirectory() as output_dir:
129
  stage1_output_dir = os.path.join(output_dir, f"stage1")
 
130
  os.makedirs(stage1_output_dir, exist_ok=True)
 
131
 
132
+ class BlockTokenRangeProcessor(LogitsProcessor):
133
+ def __init__(self, start_id, end_id):
134
+ self.blocked_token_ids = list(range(start_id, end_id))
135
+
136
+ def __call__(self, input_ids, scores):
137
+ scores[:, self.blocked_token_ids] = -float("inf")
138
+ return scores
139
+
140
+ def load_audio_mono(filepath, sampling_rate=16000):
141
+ audio, sr = torchaudio.load(filepath)
142
+ # Convert to mono
143
+ audio = torch.mean(audio, dim=0, keepdim=True)
144
+ # Resample if needed
145
+ if sr != sampling_rate:
146
+ resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
147
+ audio = resampler(audio)
148
+ return audio
149
+
150
+ def split_lyrics(lyrics: str):
151
+ pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
152
+ segments = re.findall(pattern, lyrics, re.DOTALL)
153
+ structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
154
+ return structured_lyrics
155
+
156
+ # Call the function and print the result
157
  stage1_output_set = []
158
 
159
  genres = genre_txt.strip()
 
268
  stage1_output_set.append(vocal_save_path)
269
  stage1_output_set.append(inst_save_path)
270
 
 
 
 
 
271
  print("Converting to Audio...")
272
 
273
  # convert audio tokens to audio
 
280
  wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
281
  torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
282
 
283
+ # reconstruct tracks
284
+ recons_output_dir = os.path.join(output_dir, "recons")
285
  recons_mix_dir = os.path.join(recons_output_dir, 'mix')
286
  os.makedirs(recons_mix_dir, exist_ok=True)
287
+ tracks = []
288
  for npy in stage1_output_set:
289
  codec_result = np.load(npy)
290
+ decodec_rlt = []
291
  with torch.no_grad():
292
  decoded_waveform = codec_model.decode(
293
  torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
 
295
  decoded_waveform = decoded_waveform.cpu().squeeze(0)
296
  decodec_rlt.append(torch.as_tensor(decoded_waveform))
297
  decodec_rlt = torch.cat(decodec_rlt, dim=-1)
298
+ save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
299
+ tracks.append(save_path)
300
  save_audio(decodec_rlt, save_path, 16000)
301
+ # mix tracks
302
+ for inst_path in tracks:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
  try:
304
  if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
305
  and 'instrumental' in inst_path:
 
308
  if not os.path.exists(vocal_path):
309
  continue
310
  # mix
311
+ recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
312
+ vocal_stem, sr = sf.read(inst_path)
313
+ instrumental_stem, _ = sf.read(vocal_path)
314
  mix_stem = (vocal_stem + instrumental_stem) / 1
315
+ return (sr, (mix_stem * 32767).astype(np.int16)), (sr, (vocal_stem * 32767).astype(np.int16)), (sr, (instrumental_stem * 32767).astype(np.int16))
 
 
 
 
 
316
  except Exception as e:
317
  print(e)
318
+ return None, None, None
319
 
320
 
321
+ def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322
  # Execute the command
323
  try:
324
  mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
 
358
  max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
359
  submit_btn = gr.Button("Submit")
360
 
361
+ music_out = gr.Audio(label="Mixed Audio Result")
362
+ with gr.Accordion(label="Vocal and Instrumental Result", open=False):
363
+ vocal_out = gr.Audio(label="Vocal Audio")
364
+ instrumental_out = gr.Audio(label="Instrumental Audio")
365
 
366
  gr.Examples(
367
  examples=[