Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
import os
|
4 |
-
import shutil
|
5 |
-
import tempfile
|
6 |
import spaces
|
|
|
7 |
import torch
|
8 |
import sys
|
9 |
import uuid
|
@@ -19,10 +18,8 @@ subprocess.run(
|
|
19 |
|
20 |
from huggingface_hub import snapshot_download
|
21 |
|
22 |
-
# Create xcodec_mini_infer folder
|
23 |
folder_path = './xcodec_mini_infer'
|
24 |
-
|
25 |
-
# Create the folder if it doesn't exist
|
26 |
if not os.path.exists(folder_path):
|
27 |
os.mkdir(folder_path)
|
28 |
print(f"Folder created at: {folder_path}")
|
@@ -34,7 +31,7 @@ snapshot_download(
|
|
34 |
local_dir="./xcodec_mini_infer"
|
35 |
)
|
36 |
|
37 |
-
# Change
|
38 |
inference_dir = "."
|
39 |
try:
|
40 |
os.chdir(inference_dir)
|
@@ -46,16 +43,13 @@ except FileNotFoundError:
|
|
46 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
47 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
48 |
|
49 |
-
# don't change above code
|
50 |
-
|
51 |
-
import argparse
|
52 |
import numpy as np
|
53 |
import json
|
|
|
54 |
from omegaconf import OmegaConf
|
55 |
import torchaudio
|
56 |
from torchaudio.transforms import Resample
|
57 |
import soundfile as sf
|
58 |
-
|
59 |
from tqdm import tqdm
|
60 |
from einops import rearrange
|
61 |
from codecmanipulator import CodecManipulator
|
@@ -67,12 +61,14 @@ import copy
|
|
67 |
from collections import Counter
|
68 |
from models.soundstream_hubert_new import SoundStream
|
69 |
|
|
|
|
|
|
|
70 |
device = "cuda:0"
|
71 |
|
72 |
-
# Load model and tokenizer outside the generation function (load once)
|
73 |
print("Loading model...")
|
74 |
model = AutoModelForCausalLM.from_pretrained(
|
75 |
-
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
76 |
torch_dtype=torch.float16,
|
77 |
attn_implementation="flash_attention_2",
|
78 |
).to(device)
|
@@ -83,9 +79,9 @@ basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
|
|
83 |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
84 |
|
85 |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
86 |
-
|
87 |
codectool = CodecManipulator("xcodec", 0, 1)
|
88 |
model_config = OmegaConf.load(basic_model_config)
|
|
|
89 |
# Load codec model
|
90 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
91 |
parameter_dict = torch.load(resume_path, map_location='cpu')
|
@@ -93,7 +89,9 @@ codec_model.load_state_dict(parameter_dict['codec_model'])
|
|
93 |
codec_model.eval()
|
94 |
print("Codec model loaded.")
|
95 |
|
96 |
-
|
|
|
|
|
97 |
class BlockTokenRangeProcessor(LogitsProcessor):
|
98 |
def __init__(self, start_id, end_id):
|
99 |
self.blocked_token_ids = list(range(start_id, end_id))
|
@@ -118,17 +116,19 @@ def split_lyrics(lyrics: str):
|
|
118 |
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
119 |
return structured_lyrics
|
120 |
|
|
|
|
|
|
|
121 |
@spaces.GPU(duration=175)
|
122 |
-
def
|
123 |
"""
|
124 |
-
|
125 |
-
It calls model.generate with the appropriate parameters and returns the generated sequence.
|
126 |
"""
|
127 |
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
|
128 |
output_seq = model.generate(
|
129 |
input_ids=input_ids,
|
130 |
max_new_tokens=max_new_tokens,
|
131 |
-
min_new_tokens=100, #
|
132 |
do_sample=True,
|
133 |
top_p=top_p,
|
134 |
temperature=temperature,
|
@@ -142,12 +142,39 @@ def requires_cuda(input_ids, max_new_tokens, top_p, temperature, repetition_pena
|
|
142 |
guidance_scale=guidance_scale,
|
143 |
use_cache=True
|
144 |
)
|
145 |
-
# If the
|
146 |
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
147 |
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
148 |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
149 |
return output_seq
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
def generate_music(
|
152 |
genre_txt=None,
|
153 |
lyrics_txt=None,
|
@@ -161,163 +188,147 @@ def generate_music(
|
|
161 |
rescale=False,
|
162 |
):
|
163 |
"""
|
164 |
-
Generates music based on
|
165 |
-
|
166 |
-
|
167 |
"""
|
168 |
if use_audio_prompt and not audio_prompt_path:
|
169 |
raise FileNotFoundError("Please provide an audio prompt file when 'Use Audio Prompt' is enabled!")
|
170 |
-
|
|
|
171 |
max_new_tokens = max_new_tokens * 100
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
222 |
else:
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
250 |
-
|
251 |
-
vocals = []
|
252 |
-
instrumentals = []
|
253 |
-
range_begin = 1 if use_audio_prompt else 0
|
254 |
-
for i in range(range_begin, len(soa_idx)):
|
255 |
-
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
|
256 |
-
if codec_ids[0] == 32016:
|
257 |
-
codec_ids = codec_ids[1:]
|
258 |
-
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)] # Ensure even length for reshape
|
259 |
-
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
|
260 |
-
vocals.append(vocals_ids)
|
261 |
-
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
|
262 |
-
instrumentals.append(instrumentals_ids)
|
263 |
-
vocals = np.concatenate(vocals, axis=1)
|
264 |
-
instrumentals = np.concatenate(instrumentals, axis=1)
|
265 |
-
|
266 |
-
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{random_id}".replace('.', '@') + '.npy')
|
267 |
-
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{random_id}".replace('.', '@') + '.npy')
|
268 |
-
np.save(vocal_save_path, vocals)
|
269 |
-
np.save(inst_save_path, instrumentals)
|
270 |
-
stage1_output_set.append(vocal_save_path)
|
271 |
-
stage1_output_set.append(inst_save_path)
|
272 |
-
|
273 |
-
print("Converting to Audio...")
|
274 |
-
|
275 |
-
# convert audio tokens to audio
|
276 |
-
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
277 |
-
folder_path = os.path.dirname(path)
|
278 |
-
if not os.path.exists(folder_path):
|
279 |
-
os.makedirs(folder_path)
|
280 |
-
limit = 0.99
|
281 |
-
max_val = wav.abs().max()
|
282 |
-
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
283 |
-
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
284 |
-
|
285 |
-
# reconstruct tracks
|
286 |
-
recons_output_dir = os.path.join(output_dir, "recons")
|
287 |
-
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
288 |
-
os.makedirs(recons_mix_dir, exist_ok=True)
|
289 |
-
tracks = []
|
290 |
-
for npy in stage1_output_set:
|
291 |
-
codec_result = np.load(npy)
|
292 |
-
decodec_rlt = []
|
293 |
-
with torch.no_grad():
|
294 |
-
decoded_waveform = codec_model.decode(
|
295 |
-
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
|
296 |
-
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
297 |
-
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
298 |
-
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
299 |
-
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") # Save as mp3 for gradio
|
300 |
-
tracks.append(save_path)
|
301 |
-
save_audio(decodec_rlt, save_path, 16000)
|
302 |
-
# mix tracks
|
303 |
-
for inst_path in tracks:
|
304 |
-
try:
|
305 |
-
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) and 'instrumental' in inst_path:
|
306 |
-
# find pair
|
307 |
-
vocal_path = inst_path.replace('instrumental', 'vocal')
|
308 |
-
if not os.path.exists(vocal_path):
|
309 |
-
continue
|
310 |
-
# mix
|
311 |
-
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
|
312 |
-
vocal_stem, sr = sf.read(vocal_path)
|
313 |
-
instrumental_stem, _ = sf.read(inst_path)
|
314 |
-
mix_stem = (vocal_stem + instrumental_stem) / 1
|
315 |
-
return (sr, (mix_stem * 32767).astype(np.int16)), (sr, (vocal_stem * 32767).astype(np.int16)), (sr, (instrumental_stem * 32767).astype(np.int16))
|
316 |
-
except Exception as e:
|
317 |
-
print(e)
|
318 |
-
return None, None, None
|
319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
# Gradio Interface
|
|
|
321 |
with gr.Blocks() as demo:
|
322 |
with gr.Column():
|
323 |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
|
@@ -350,7 +361,6 @@ with gr.Blocks() as demo:
|
|
350 |
instrumental_out = gr.Audio(label="Instrumental Audio")
|
351 |
gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")
|
352 |
|
353 |
-
# When the "Submit" button is clicked, pass the additional audio-related inputs to the function.
|
354 |
submit_btn.click(
|
355 |
fn=generate_music,
|
356 |
inputs=[
|
@@ -364,7 +374,6 @@ with gr.Blocks() as demo:
|
|
364 |
outputs=[music_out, vocal_out, instrumental_out]
|
365 |
)
|
366 |
|
367 |
-
# Examples updated to only include text inputs
|
368 |
gr.Examples(
|
369 |
examples=[
|
370 |
[
|
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
import os
|
|
|
|
|
4 |
import spaces
|
5 |
+
import shutil
|
6 |
import torch
|
7 |
import sys
|
8 |
import uuid
|
|
|
18 |
|
19 |
from huggingface_hub import snapshot_download
|
20 |
|
21 |
+
# Create xcodec_mini_infer folder if it does not exist
|
22 |
folder_path = './xcodec_mini_infer'
|
|
|
|
|
23 |
if not os.path.exists(folder_path):
|
24 |
os.mkdir(folder_path)
|
25 |
print(f"Folder created at: {folder_path}")
|
|
|
31 |
local_dir="./xcodec_mini_infer"
|
32 |
)
|
33 |
|
34 |
+
# Change working directory if needed
|
35 |
inference_dir = "."
|
36 |
try:
|
37 |
os.chdir(inference_dir)
|
|
|
43 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
44 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
45 |
|
|
|
|
|
|
|
46 |
import numpy as np
|
47 |
import json
|
48 |
+
import argparse
|
49 |
from omegaconf import OmegaConf
|
50 |
import torchaudio
|
51 |
from torchaudio.transforms import Resample
|
52 |
import soundfile as sf
|
|
|
53 |
from tqdm import tqdm
|
54 |
from einops import rearrange
|
55 |
from codecmanipulator import CodecManipulator
|
|
|
61 |
from collections import Counter
|
62 |
from models.soundstream_hubert_new import SoundStream
|
63 |
|
64 |
+
# ---------------------------------------------------------------------
|
65 |
+
# Load models, configurations, and tokenizers (run once at startup)
|
66 |
+
# ---------------------------------------------------------------------
|
67 |
device = "cuda:0"
|
68 |
|
|
|
69 |
print("Loading model...")
|
70 |
model = AutoModelForCausalLM.from_pretrained(
|
71 |
+
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
72 |
torch_dtype=torch.float16,
|
73 |
attn_implementation="flash_attention_2",
|
74 |
).to(device)
|
|
|
79 |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
80 |
|
81 |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
|
|
82 |
codectool = CodecManipulator("xcodec", 0, 1)
|
83 |
model_config = OmegaConf.load(basic_model_config)
|
84 |
+
|
85 |
# Load codec model
|
86 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
87 |
parameter_dict = torch.load(resume_path, map_location='cpu')
|
|
|
89 |
codec_model.eval()
|
90 |
print("Codec model loaded.")
|
91 |
|
92 |
+
# ---------------------------------------------------------------------
|
93 |
+
# Helper Classes and Functions
|
94 |
+
# ---------------------------------------------------------------------
|
95 |
class BlockTokenRangeProcessor(LogitsProcessor):
|
96 |
def __init__(self, start_id, end_id):
|
97 |
self.blocked_token_ids = list(range(start_id, end_id))
|
|
|
116 |
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
117 |
return structured_lyrics
|
118 |
|
119 |
+
# ---------------------------
|
120 |
+
# CUDA Heavy Functions
|
121 |
+
# ---------------------------
|
122 |
@spaces.GPU(duration=175)
|
123 |
+
def requires_cuda_generation(input_ids, max_new_tokens, top_p, temperature, repetition_penalty, guidance_scale):
|
124 |
"""
|
125 |
+
Performs the CUDA-intensive generation using the language model.
|
|
|
126 |
"""
|
127 |
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
|
128 |
output_seq = model.generate(
|
129 |
input_ids=input_ids,
|
130 |
max_new_tokens=max_new_tokens,
|
131 |
+
min_new_tokens=100, # To avoid too-short generations
|
132 |
do_sample=True,
|
133 |
top_p=top_p,
|
134 |
temperature=temperature,
|
|
|
142 |
guidance_scale=guidance_scale,
|
143 |
use_cache=True
|
144 |
)
|
145 |
+
# If the generated sequence does not end with the end-of-audio token, append it.
|
146 |
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
147 |
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
148 |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
149 |
return output_seq
|
150 |
|
151 |
+
@spaces.GPU(duration=15)
|
152 |
+
def requires_cuda_decode(codec_result):
|
153 |
+
"""
|
154 |
+
Uses the codec model on the GPU to decode a given numpy array of codec IDs
|
155 |
+
into a waveform tensor.
|
156 |
+
"""
|
157 |
+
with torch.no_grad():
|
158 |
+
# Convert the numpy result to tensor and move to device
|
159 |
+
codec_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long)
|
160 |
+
# The expected shape is (seq_len, batch, channels), so we add and permute dims as needed.
|
161 |
+
codec_tensor = codec_tensor.unsqueeze(0).permute(1, 0, 2).to(device)
|
162 |
+
decoded_waveform = codec_model.decode(codec_tensor)
|
163 |
+
return decoded_waveform.cpu().squeeze(0)
|
164 |
+
|
165 |
+
def save_audio(wav: torch.Tensor, sample_rate: int, rescale: bool = False):
|
166 |
+
"""
|
167 |
+
Convert a waveform tensor to a numpy array (16-bit PCM) without writing to disk.
|
168 |
+
"""
|
169 |
+
limit = 0.99
|
170 |
+
max_val = wav.abs().max()
|
171 |
+
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
172 |
+
# Return a tuple as expected by Gradio: (sample_rate, np.array)
|
173 |
+
return sample_rate, (wav.numpy() * 32767).astype(np.int16)
|
174 |
+
|
175 |
+
# ---------------------------------------------------------------------
|
176 |
+
# Main Generation Function (without temporary files/directories)
|
177 |
+
# ---------------------------------------------------------------------
|
178 |
def generate_music(
|
179 |
genre_txt=None,
|
180 |
lyrics_txt=None,
|
|
|
188 |
rescale=False,
|
189 |
):
|
190 |
"""
|
191 |
+
Generates music based on genre and lyrics (and optionally an audio prompt).
|
192 |
+
The heavy CUDA computations are performed in helper functions.
|
193 |
+
All intermediate data is kept in memory.
|
194 |
"""
|
195 |
if use_audio_prompt and not audio_prompt_path:
|
196 |
raise FileNotFoundError("Please provide an audio prompt file when 'Use Audio Prompt' is enabled!")
|
197 |
+
|
198 |
+
# Scale max_new_tokens (e.g. each token may correspond to 100 time units)
|
199 |
max_new_tokens = max_new_tokens * 100
|
200 |
|
201 |
+
# Prepare prompt texts from genre and lyrics
|
202 |
+
genres = genre_txt.strip()
|
203 |
+
lyrics_segments = split_lyrics(lyrics_txt + "\n")
|
204 |
+
full_lyrics = "\n".join(lyrics_segments)
|
205 |
+
# The first prompt is the overall instruction and full lyrics.
|
206 |
+
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
207 |
+
# Then add each individual lyric segment.
|
208 |
+
prompt_texts += lyrics_segments
|
209 |
+
|
210 |
+
random_id = uuid.uuid4()
|
211 |
+
raw_output = None
|
212 |
+
|
213 |
+
# Generation configuration
|
214 |
+
top_p = 0.93
|
215 |
+
temperature = 1.0
|
216 |
+
repetition_penalty = 1.2
|
217 |
+
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
218 |
+
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
219 |
+
|
220 |
+
# Limit the number of segments to generate (adding 1 because the first prompt is a header)
|
221 |
+
run_n_segments = min(run_n_segments + 1, len(prompt_texts))
|
222 |
+
|
223 |
+
print("Starting generation for segments:")
|
224 |
+
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
|
225 |
+
|
226 |
+
# Loop over each prompt segment
|
227 |
+
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
228 |
+
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
229 |
+
# Adjust guidance scale based on segment index
|
230 |
+
guidance_scale = 1.5 if i <= 1 else 1.2
|
231 |
+
|
232 |
+
# For the header prompt, we just use the tokenized text.
|
233 |
+
if i == 0:
|
234 |
+
continue
|
235 |
+
|
236 |
+
if i == 1:
|
237 |
+
# Process audio prompt if provided
|
238 |
+
if use_audio_prompt:
|
239 |
+
audio_prompt = load_audio_mono(audio_prompt_path)
|
240 |
+
audio_prompt = audio_prompt.unsqueeze(0)
|
241 |
+
with torch.no_grad():
|
242 |
+
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
|
243 |
+
raw_codes = raw_codes.transpose(0, 1)
|
244 |
+
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
|
245 |
+
code_ids = codectool.npy2ids(raw_codes[0])
|
246 |
+
# Select a slice corresponding to the provided time range.
|
247 |
+
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
|
248 |
+
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
|
249 |
+
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
|
250 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
251 |
else:
|
252 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0])
|
253 |
+
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
254 |
+
else:
|
255 |
+
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
256 |
+
|
257 |
+
# Convert prompt tokens to tensor and move to device
|
258 |
+
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
259 |
+
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if (i > 1 and raw_output is not None) else prompt_ids
|
260 |
+
|
261 |
+
# Ensure input length does not exceed model context window (using last tokens if needed)
|
262 |
+
max_context = 16384 - max_new_tokens - 1
|
263 |
+
if input_ids.shape[-1] > max_context:
|
264 |
+
print(
|
265 |
+
f'Section {i}: input length {input_ids.shape[-1]} exceeds context length {max_context}. Using last {max_context} tokens.'
|
266 |
+
)
|
267 |
+
input_ids = input_ids[:, -max_context:]
|
268 |
+
|
269 |
+
# Generate new tokens using the CUDA-heavy helper function
|
270 |
+
output_seq = requires_cuda_generation(
|
271 |
+
input_ids,
|
272 |
+
max_new_tokens,
|
273 |
+
top_p,
|
274 |
+
temperature,
|
275 |
+
repetition_penalty,
|
276 |
+
guidance_scale
|
277 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
+
# Accumulate outputs across segments
|
280 |
+
if i > 1:
|
281 |
+
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
282 |
+
else:
|
283 |
+
raw_output = output_seq
|
284 |
+
print(f"Accumulated output length: {raw_output.shape[-1]} tokens")
|
285 |
+
|
286 |
+
# After generation, convert raw output tokens into codec IDs.
|
287 |
+
ids = raw_output[0].cpu().numpy()
|
288 |
+
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
289 |
+
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
290 |
+
if len(soa_idx) != len(eoa_idx):
|
291 |
+
raise ValueError(f"Invalid pairs of soa and eoa: Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}")
|
292 |
+
|
293 |
+
vocals_list = []
|
294 |
+
instrumentals_list = []
|
295 |
+
# If an audio prompt was used, skip the first pair.
|
296 |
+
range_begin = 1 if use_audio_prompt else 0
|
297 |
+
for i in range(range_begin, len(soa_idx)):
|
298 |
+
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
|
299 |
+
if codec_ids[0] == 32016:
|
300 |
+
codec_ids = codec_ids[1:]
|
301 |
+
# Ensure even length for reshaping into two tracks (vocal and instrumental)
|
302 |
+
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
|
303 |
+
reshaped = rearrange(codec_ids, "(n b) -> b n", b=2)
|
304 |
+
vocals_ids = codectool.ids2npy(reshaped[0])
|
305 |
+
instrumentals_ids = codectool.ids2npy(reshaped[1])
|
306 |
+
vocals_list.append(vocals_ids)
|
307 |
+
instrumentals_list.append(instrumentals_ids)
|
308 |
+
|
309 |
+
# Concatenate segments in time dimension
|
310 |
+
vocals_codec = np.concatenate(vocals_list, axis=1)
|
311 |
+
instrumentals_codec = np.concatenate(instrumentals_list, axis=1)
|
312 |
+
|
313 |
+
print("Decoding audio on GPU...")
|
314 |
+
|
315 |
+
# Decode the codec arrays to waveforms using the CUDA helper function.
|
316 |
+
vocal_waveform = requires_cuda_decode(vocals_codec)
|
317 |
+
instrumental_waveform = requires_cuda_decode(instrumentals_codec)
|
318 |
+
|
319 |
+
# Mix the two waveforms (simple summation)
|
320 |
+
mixed_waveform = (vocal_waveform + instrumental_waveform) / 1.0
|
321 |
+
|
322 |
+
# Return the three audio outputs (mixed, vocal, instrumental) as tuples (sample_rate, np.array)
|
323 |
+
sample_rate = 16000
|
324 |
+
mixed_audio = save_audio(mixed_waveform, sample_rate, rescale)
|
325 |
+
vocal_audio = save_audio(vocal_waveform, sample_rate, rescale)
|
326 |
+
instrumental_audio = save_audio(instrumental_waveform, sample_rate, rescale)
|
327 |
+
return mixed_audio, vocal_audio, instrumental_audio
|
328 |
+
|
329 |
+
# ---------------------------------------------------------------------
|
330 |
# Gradio Interface
|
331 |
+
# ---------------------------------------------------------------------
|
332 |
with gr.Blocks() as demo:
|
333 |
with gr.Column():
|
334 |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
|
|
|
361 |
instrumental_out = gr.Audio(label="Instrumental Audio")
|
362 |
gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")
|
363 |
|
|
|
364 |
submit_btn.click(
|
365 |
fn=generate_music,
|
366 |
inputs=[
|
|
|
374 |
outputs=[music_out, vocal_out, instrumental_out]
|
375 |
)
|
376 |
|
|
|
377 |
gr.Examples(
|
378 |
examples=[
|
379 |
[
|