Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -46,6 +46,7 @@ except FileNotFoundError:
|
|
46 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
47 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
48 |
|
|
|
49 |
# don't change above code
|
50 |
|
51 |
import argparse
|
@@ -66,35 +67,31 @@ import time
|
|
66 |
import copy
|
67 |
from collections import Counter
|
68 |
from models.soundstream_hubert_new import SoundStream
|
69 |
-
from vocoder import build_codec_model, process_audio
|
70 |
-
from post_process_audio import replace_low_freq_with_energy_matched
|
71 |
|
72 |
device = "cuda:0"
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
model = AutoModelForCausalLM.from_pretrained(
|
76 |
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
77 |
torch_dtype=torch.float16,
|
78 |
attn_implementation="flash_attention_2",
|
79 |
-
# low_cpu_mem_usage=True,
|
80 |
).to(device)
|
81 |
model.eval()
|
82 |
|
83 |
-
# Stage 2 model
|
84 |
-
stage2_model_path = "m-a-p/YuE-s2-1B-general"
|
85 |
-
model_stage2 = AutoModelForCausalLM.from_pretrained(
|
86 |
-
stage2_model_path,
|
87 |
-
torch_dtype=torch.float16,
|
88 |
-
attn_implementation="flash_attention_2"
|
89 |
-
)
|
90 |
-
model_stage2.to(device)
|
91 |
-
model_stage2.eval()
|
92 |
-
|
93 |
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
|
94 |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
95 |
-
config_path = './xcodec_mini_infer/decoders/config.yaml'
|
96 |
-
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
|
97 |
-
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
|
98 |
|
99 |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
100 |
|
@@ -105,19 +102,170 @@ model_config = OmegaConf.load(basic_model_config)
|
|
105 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
106 |
parameter_dict = torch.load(resume_path, map_location='cpu')
|
107 |
codec_model.load_state_dict(parameter_dict['codec_model'])
|
108 |
-
# codec_model = torch.compile(codec_model)
|
109 |
codec_model.eval()
|
110 |
|
111 |
-
# Preload and compile vocoders
|
112 |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
113 |
vocal_decoder.to(device)
|
114 |
inst_decoder.to(device)
|
115 |
-
#vocal_decoder = torch.compile(vocal_decoder)
|
116 |
-
#inst_decoder = torch.compile(inst_decoder)
|
117 |
vocal_decoder.eval()
|
118 |
inst_decoder.eval()
|
119 |
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def generate_music(
|
122 |
max_new_tokens=5,
|
123 |
run_n_segments=2,
|
@@ -141,31 +289,6 @@ def generate_music(
|
|
141 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
142 |
os.makedirs(stage2_output_dir, exist_ok=True)
|
143 |
|
144 |
-
class BlockTokenRangeProcessor(LogitsProcessor):
|
145 |
-
def __init__(self, start_id, end_id):
|
146 |
-
self.blocked_token_ids = list(range(start_id, end_id))
|
147 |
-
|
148 |
-
def __call__(self, input_ids, scores):
|
149 |
-
scores[:, self.blocked_token_ids] = -float("inf")
|
150 |
-
return scores
|
151 |
-
|
152 |
-
def load_audio_mono(filepath, sampling_rate=16000):
|
153 |
-
audio, sr = torchaudio.load(filepath)
|
154 |
-
# Convert to mono
|
155 |
-
audio = torch.mean(audio, dim=0, keepdim=True)
|
156 |
-
# Resample if needed
|
157 |
-
if sr != sampling_rate:
|
158 |
-
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
159 |
-
audio = resampler(audio)
|
160 |
-
return audio
|
161 |
-
|
162 |
-
def split_lyrics(lyrics: str):
|
163 |
-
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
164 |
-
segments = re.findall(pattern, lyrics, re.DOTALL)
|
165 |
-
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
166 |
-
return structured_lyrics
|
167 |
-
|
168 |
-
# Call the function and print the result
|
169 |
stage1_output_set = []
|
170 |
|
171 |
genres = genre_txt.strip()
|
@@ -280,136 +403,8 @@ def generate_music(
|
|
280 |
stage1_output_set.append(vocal_save_path)
|
281 |
stage1_output_set.append(inst_save_path)
|
282 |
|
283 |
-
print("Stage 2 inference...")
|
284 |
-
|
285 |
-
codec_ids = codectool.unflatten(prompt, n_quantizer=1)
|
286 |
-
codec_ids = codectool.offset_tok_ids(
|
287 |
-
codec_ids,
|
288 |
-
global_offset=codectool.global_offset,
|
289 |
-
codebook_size=codectool.codebook_size,
|
290 |
-
num_codebooks=codectool.num_codebooks,
|
291 |
-
).astype(np.int32)
|
292 |
-
|
293 |
-
# Prepare prompt_ids based on batch size or single input
|
294 |
-
if batch_size > 1:
|
295 |
-
codec_list = []
|
296 |
-
for i in range(batch_size):
|
297 |
-
idx_begin = i * 300
|
298 |
-
idx_end = (i + 1) * 300
|
299 |
-
codec_list.append(codec_ids[:, idx_begin:idx_end])
|
300 |
-
|
301 |
-
codec_ids = np.concatenate(codec_list, axis=0)
|
302 |
-
prompt_ids = np.concatenate(
|
303 |
-
[
|
304 |
-
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
|
305 |
-
codec_ids,
|
306 |
-
np.tile([mmtokenizer.stage_2], (batch_size, 1)),
|
307 |
-
],
|
308 |
-
axis=1
|
309 |
-
)
|
310 |
-
else:
|
311 |
-
prompt_ids = np.concatenate([
|
312 |
-
np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
|
313 |
-
codec_ids.flatten(), # Flatten the 2D array to 1D
|
314 |
-
np.array([mmtokenizer.stage_2])
|
315 |
-
]).astype(np.int32)
|
316 |
-
prompt_ids = prompt_ids[np.newaxis, ...]
|
317 |
-
|
318 |
-
codec_ids = torch.as_tensor(codec_ids).to(device)
|
319 |
-
prompt_ids = torch.as_tensor(prompt_ids).to(device)
|
320 |
-
len_prompt = prompt_ids.shape[-1]
|
321 |
-
|
322 |
-
block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)])
|
323 |
-
|
324 |
-
# Teacher forcing generate loop
|
325 |
-
for frames_idx in range(codec_ids.shape[1]):
|
326 |
-
cb0 = codec_ids[:, frames_idx:frames_idx+1]
|
327 |
-
prompt_ids = torch.cat([prompt_ids, cb0], dim=1)
|
328 |
-
input_ids = prompt_ids
|
329 |
-
|
330 |
-
with torch.no_grad():
|
331 |
-
stage2_output = model.generate(input_ids=input_ids,
|
332 |
-
min_new_tokens=7,
|
333 |
-
max_new_tokens=7,
|
334 |
-
eos_token_id=mmtokenizer.eoa,
|
335 |
-
pad_token_id=mmtokenizer.eoa,
|
336 |
-
logits_processor=block_list,
|
337 |
-
)
|
338 |
-
|
339 |
-
assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1]-prompt_ids.shape[1]}"
|
340 |
-
prompt_ids = stage2_output
|
341 |
-
|
342 |
-
# Return output based on batch size
|
343 |
-
if batch_size > 1:
|
344 |
-
output = prompt_ids.cpu().numpy()[:, len_prompt:]
|
345 |
-
output_list = [output[i] for i in range(batch_size)]
|
346 |
-
output = np.concatenate(output_list, axis=0)
|
347 |
-
else:
|
348 |
-
output = prompt_ids[0].cpu().numpy()[len_prompt:]
|
349 |
-
|
350 |
-
return output
|
351 |
-
|
352 |
-
def stage2_inference(model, stage1_output_set, stage2_output_dir, batch_size=4):
|
353 |
-
stage2_result = []
|
354 |
-
for i in tqdm(range(len(stage1_output_set))):
|
355 |
-
output_filename = os.path.join(stage2_output_dir, os.path.basename(stage1_output_set[i]))
|
356 |
-
|
357 |
-
if os.path.exists(output_filename):
|
358 |
-
print(f'{output_filename} stage2 has done.')
|
359 |
-
continue
|
360 |
-
|
361 |
-
# Load the prompt
|
362 |
-
prompt = np.load(stage1_output_set[i]).astype(np.int32)
|
363 |
-
|
364 |
-
# Only accept 6s segments
|
365 |
-
output_duration = prompt.shape[-1] // 50 // 6 * 6
|
366 |
-
num_batch = output_duration // 6
|
367 |
-
|
368 |
-
if num_batch <= batch_size:
|
369 |
-
# If num_batch is less than or equal to batch_size, we can infer the entire prompt at once
|
370 |
-
output = stage2_generate(model, prompt[:, :output_duration*50], batch_size=num_batch)
|
371 |
-
else:
|
372 |
-
# If num_batch is greater than batch_size, process in chunks of batch_size
|
373 |
-
segments = []
|
374 |
-
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
|
375 |
-
|
376 |
-
for seg in range(num_segments):
|
377 |
-
start_idx = seg * batch_size * 300
|
378 |
-
# Ensure the end_idx does not exceed the available length
|
379 |
-
end_idx = min((seg + 1) * batch_size * 300, output_duration*50) # Adjust the last segment
|
380 |
-
current_batch_size = batch_size if seg != num_segments-1 or num_batch % batch_size == 0 else num_batch % batch_size
|
381 |
-
segment = stage2_generate(
|
382 |
-
model,
|
383 |
-
prompt[:, start_idx:end_idx],
|
384 |
-
batch_size=current_batch_size
|
385 |
-
)
|
386 |
-
segments.append(segment)
|
387 |
-
|
388 |
-
# Concatenate all the segments
|
389 |
-
output = np.concatenate(segments, axis=0)
|
390 |
-
|
391 |
-
# Process the ending part of the prompt
|
392 |
-
if output_duration*50 != prompt.shape[-1]:
|
393 |
-
ending = stage2_generate(model, prompt[:, output_duration*50:], batch_size=1)
|
394 |
-
output = np.concatenate([output, ending], axis=0)
|
395 |
-
output = codectool_stage2.ids2npy(output)
|
396 |
-
|
397 |
-
# Fix invalid codes (a dirty solution, which may harm the quality of audio)
|
398 |
-
# We are trying to find better one
|
399 |
-
fixed_output = copy.deepcopy(output)
|
400 |
-
for i, line in enumerate(output):
|
401 |
-
for j, element in enumerate(line):
|
402 |
-
if element < 0 or element > 1023:
|
403 |
-
counter = Counter(line)
|
404 |
-
most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
|
405 |
-
fixed_output[i, j] = most_frequant
|
406 |
-
# save output
|
407 |
-
np.save(output_filename, fixed_output)
|
408 |
-
stage2_result.append(output_filename)
|
409 |
-
return stage2_result
|
410 |
-
|
411 |
-
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=4)
|
412 |
-
print(stage2_result)
|
413 |
print('Stage 2 DONE.\n')
|
414 |
|
415 |
print("Converting to Audio...")
|
@@ -424,14 +419,14 @@ def generate_music(
|
|
424 |
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
425 |
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
426 |
|
427 |
-
# reconstruct tracks
|
428 |
-
recons_output_dir = os.path.join(output_dir, "
|
429 |
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
430 |
os.makedirs(recons_mix_dir, exist_ok=True)
|
431 |
-
|
432 |
-
for npy in
|
433 |
codec_result = np.load(npy)
|
434 |
-
decodec_rlt
|
435 |
with torch.no_grad():
|
436 |
decoded_waveform = codec_model.decode(
|
437 |
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
|
@@ -439,42 +434,29 @@ def generate_music(
|
|
439 |
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
440 |
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
441 |
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
442 |
-
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
443 |
-
|
444 |
save_audio(decodec_rlt, save_path, 16000)
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
if not os.path.exists(vocal_path):
|
453 |
-
continue
|
454 |
-
# mix
|
455 |
-
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
|
456 |
-
vocal_stem, sr = sf.read(inst_path)
|
457 |
-
instrumental_stem, _ = sf.read(vocal_path)
|
458 |
-
mix_stem = (vocal_stem + instrumental_stem) / 1
|
459 |
-
sf.write(recons_mix, mix_stem, sr) # saving 16k mix audio
|
460 |
-
except Exception as e:
|
461 |
-
print(e)
|
462 |
-
|
463 |
-
print("Upsampling audio...")
|
464 |
-
# vocoder to upsample audios
|
465 |
-
vocoder_output_dir = os.path.join(output_dir, 'vocoder')
|
466 |
-
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
|
467 |
-
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
|
468 |
-
os.makedirs(vocoder_mix_dir, exist_ok=True)
|
469 |
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
470 |
for npy in stage2_result:
|
471 |
if 'instrumental' in npy:
|
472 |
# Process instrumental
|
473 |
instrumental_output = process_audio(
|
474 |
npy,
|
475 |
-
os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
|
476 |
rescale,
|
477 |
-
None,
|
478 |
inst_decoder,
|
479 |
codec_model
|
480 |
)
|
@@ -482,35 +464,78 @@ def generate_music(
|
|
482 |
# Process vocal
|
483 |
vocal_output = process_audio(
|
484 |
npy,
|
485 |
-
os.path.join(vocoder_stems_dir, 'vocal.mp3'),
|
486 |
rescale,
|
487 |
-
None,
|
488 |
vocal_decoder,
|
489 |
codec_model
|
490 |
)
|
491 |
-
|
|
|
492 |
try:
|
493 |
mix_output = instrumental_output + vocal_output
|
494 |
-
vocoder_mix = os.path.join(
|
495 |
-
save_audio(mix_output, vocoder_mix, 44100, rescale)
|
496 |
print(f"Created mix: {vocoder_mix}")
|
|
|
497 |
except RuntimeError as e:
|
498 |
print(e)
|
499 |
-
|
500 |
-
|
501 |
-
# Post process
|
502 |
-
final_mix_path = os.path.join(output_dir, os.path.basename(recons_mix))
|
503 |
-
replace_low_freq_with_energy_matched(
|
504 |
-
a_file=recons_mix, # 16kHz
|
505 |
-
b_file=vocoder_mix, # 48kHz
|
506 |
-
c_file=final_mix_path,
|
507 |
-
cutoff_freq=5500.0
|
508 |
-
)
|
509 |
|
510 |
-
# return final mix, upsampled vocal stem, upsampled instrumental stem
|
511 |
-
return (44100, (mix_output.cpu().numpy() * 32767).astype(np.int16)), (44100, (vocal_output.cpu().numpy() * 32767).astype(np.int16)), (44100, (instrumental_output.cpu().numpy() * 32767).astype(np.int16))
|
512 |
|
513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
# Execute the command
|
515 |
try:
|
516 |
mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
@@ -522,6 +547,7 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=
|
|
522 |
finally:
|
523 |
print("Temporary files deleted.")
|
524 |
|
|
|
525 |
# Gradio
|
526 |
with gr.Blocks() as demo:
|
527 |
with gr.Column():
|
@@ -549,10 +575,10 @@ with gr.Blocks() as demo:
|
|
549 |
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
|
550 |
submit_btn = gr.Button("Submit")
|
551 |
|
552 |
-
music_out = gr.Audio(label="Mixed Audio Result")
|
553 |
-
with gr.Accordion(label="Vocal and Instrumental Result", open=False):
|
554 |
-
vocal_out = gr.Audio(label="Vocal Audio")
|
555 |
-
instrumental_out = gr.Audio(label="Instrumental Audio")
|
556 |
|
557 |
gr.Examples(
|
558 |
examples=[
|
|
|
46 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
47 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
48 |
|
49 |
+
|
50 |
# don't change above code
|
51 |
|
52 |
import argparse
|
|
|
67 |
import copy
|
68 |
from collections import Counter
|
69 |
from models.soundstream_hubert_new import SoundStream
|
70 |
+
from vocoder import build_codec_model, process_audio
|
71 |
+
from post_process_audio import replace_low_freq_with_energy_matched
|
72 |
|
73 |
device = "cuda:0"
|
74 |
|
75 |
+
stage2_model = "m-a-p/YuE-s2-1B-general"
|
76 |
+
model_stage2 = AutoModelForCausalLM.from_pretrained(
|
77 |
+
stage2_model,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
attn_implementation="flash_attention_2"
|
80 |
+
).to(device)
|
81 |
+
model_stage2.eval()
|
82 |
+
|
83 |
model = AutoModelForCausalLM.from_pretrained(
|
84 |
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
85 |
torch_dtype=torch.float16,
|
86 |
attn_implementation="flash_attention_2",
|
|
|
87 |
).to(device)
|
88 |
model.eval()
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
|
91 |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
92 |
+
config_path = './xcodec_mini_infer/decoders/config.yaml'
|
93 |
+
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
|
94 |
+
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
|
95 |
|
96 |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
97 |
|
|
|
102 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
103 |
parameter_dict = torch.load(resume_path, map_location='cpu')
|
104 |
codec_model.load_state_dict(parameter_dict['codec_model'])
|
|
|
105 |
codec_model.eval()
|
106 |
|
107 |
+
# Preload and compile vocoders
|
108 |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
109 |
vocal_decoder.to(device)
|
110 |
inst_decoder.to(device)
|
|
|
|
|
111 |
vocal_decoder.eval()
|
112 |
inst_decoder.eval()
|
113 |
|
114 |
+
|
115 |
+
class BlockTokenRangeProcessor(LogitsProcessor):
|
116 |
+
def __init__(self, start_id, end_id):
|
117 |
+
self.blocked_token_ids = list(range(start_id, end_id))
|
118 |
+
|
119 |
+
def __call__(self, input_ids, scores):
|
120 |
+
scores[:, self.blocked_token_ids] = -float("inf")
|
121 |
+
return scores
|
122 |
+
|
123 |
+
def load_audio_mono(filepath, sampling_rate=16000):
|
124 |
+
audio, sr = torchaudio.load(filepath)
|
125 |
+
# Convert to mono
|
126 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
127 |
+
# Resample if needed
|
128 |
+
if sr != sampling_rate:
|
129 |
+
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
130 |
+
audio = resampler(audio)
|
131 |
+
return audio
|
132 |
+
|
133 |
+
def split_lyrics(lyrics: str):
|
134 |
+
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
135 |
+
segments = re.findall(pattern, lyrics, re.DOTALL)
|
136 |
+
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
137 |
+
return structured_lyrics
|
138 |
+
|
139 |
+
|
140 |
+
def stage2_generate(model, prompt, batch_size=1): # set batch_size=1 for gradio demo
|
141 |
+
codec_ids = codectool.unflatten(prompt, n_quantizer=1)
|
142 |
+
codec_ids = codectool.offset_tok_ids(
|
143 |
+
codec_ids,
|
144 |
+
global_offset=codectool.global_offset,
|
145 |
+
codebook_size=codectool.codebook_size,
|
146 |
+
num_codebooks=codectool.num_codebooks,
|
147 |
+
).astype(np.int32)
|
148 |
+
|
149 |
+
# Prepare prompt_ids based on batch size or single input
|
150 |
+
if batch_size > 1:
|
151 |
+
codec_list = []
|
152 |
+
for i in range(batch_size):
|
153 |
+
idx_begin = i * 300
|
154 |
+
idx_end = (i + 1) * 300
|
155 |
+
codec_list.append(codec_ids[:, idx_begin:idx_end])
|
156 |
+
|
157 |
+
codec_ids = np.concatenate(codec_list, axis=0)
|
158 |
+
prompt_ids = np.concatenate(
|
159 |
+
[
|
160 |
+
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
|
161 |
+
codec_ids,
|
162 |
+
np.tile([mmtokenizer.stage_2], (batch_size, 1)),
|
163 |
+
],
|
164 |
+
axis=1
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
prompt_ids = np.concatenate([
|
168 |
+
np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
|
169 |
+
codec_ids.flatten(), # Flatten the 2D array to 1D
|
170 |
+
np.array([mmtokenizer.stage_2])
|
171 |
+
]).astype(np.int32)
|
172 |
+
prompt_ids = prompt_ids[np.newaxis, ...]
|
173 |
+
|
174 |
+
codec_ids = torch.as_tensor(codec_ids).to(device)
|
175 |
+
prompt_ids = torch.as_tensor(prompt_ids).to(device)
|
176 |
+
len_prompt = prompt_ids.shape[-1]
|
177 |
+
|
178 |
+
block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)])
|
179 |
+
|
180 |
+
# Teacher forcing generate loop
|
181 |
+
for frames_idx in range(codec_ids.shape[1]):
|
182 |
+
cb0 = codec_ids[:, frames_idx:frames_idx+1]
|
183 |
+
prompt_ids = torch.cat([prompt_ids, cb0], dim=1)
|
184 |
+
input_ids = prompt_ids
|
185 |
+
|
186 |
+
with torch.no_grad():
|
187 |
+
stage2_output = model.generate(input_ids=input_ids,
|
188 |
+
min_new_tokens=7,
|
189 |
+
max_new_tokens=7,
|
190 |
+
eos_token_id=mmtokenizer.eoa,
|
191 |
+
pad_token_id=mmtokenizer.eoa,
|
192 |
+
logits_processor=block_list,
|
193 |
+
)
|
194 |
+
|
195 |
+
assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1]-prompt_ids.shape[1]}"
|
196 |
+
prompt_ids = stage2_output
|
197 |
+
|
198 |
+
# Return output based on batch size
|
199 |
+
if batch_size > 1:
|
200 |
+
output = prompt_ids.cpu().numpy()[:, len_prompt:]
|
201 |
+
output_list = [output[i] for i in range(batch_size)]
|
202 |
+
output = np.concatenate(output_list, axis=0)
|
203 |
+
else:
|
204 |
+
output = prompt_ids[0].cpu().numpy()[len_prompt:]
|
205 |
+
|
206 |
+
return output
|
207 |
+
|
208 |
+
def stage2_inference(model, stage1_output_set, stage2_output_dir, batch_size=1): # set batch_size=1 for gradio demo
|
209 |
+
stage2_result = []
|
210 |
+
for i in tqdm(range(len(stage1_output_set))):
|
211 |
+
output_filename = os.path.join(stage2_output_dir, os.path.basename(stage1_output_set[i]))
|
212 |
+
|
213 |
+
if os.path.exists(output_filename):
|
214 |
+
print(f'{output_filename} stage2 has done.')
|
215 |
+
continue
|
216 |
+
|
217 |
+
# Load the prompt
|
218 |
+
prompt = np.load(stage1_output_set[i]).astype(np.int32)
|
219 |
+
|
220 |
+
# Only accept 6s segments
|
221 |
+
output_duration = prompt.shape[-1] // 50 // 6 * 6
|
222 |
+
num_batch = output_duration // 6
|
223 |
+
|
224 |
+
if num_batch <= batch_size:
|
225 |
+
# If num_batch is less than or equal to batch_size, we can infer the entire prompt at once
|
226 |
+
output = stage2_generate(model, prompt[:, :output_duration*50], batch_size=num_batch)
|
227 |
+
else:
|
228 |
+
# If num_batch is greater than batch_size, process in chunks of batch_size
|
229 |
+
segments = []
|
230 |
+
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
|
231 |
+
|
232 |
+
for seg in range(num_segments):
|
233 |
+
start_idx = seg * batch_size * 300
|
234 |
+
# Ensure the end_idx does not exceed the available length
|
235 |
+
end_idx = min((seg + 1) * batch_size * 300, output_duration*50) # Adjust the last segment
|
236 |
+
current_batch_size = batch_size if seg != num_segments-1 or num_batch % batch_size == 0 else num_batch % batch_size
|
237 |
+
segment = stage2_generate(
|
238 |
+
model,
|
239 |
+
prompt[:, start_idx:end_idx],
|
240 |
+
batch_size=current_batch_size
|
241 |
+
)
|
242 |
+
segments.append(segment)
|
243 |
+
|
244 |
+
# Concatenate all the segments
|
245 |
+
output = np.concatenate(segments, axis=0)
|
246 |
+
|
247 |
+
# Process the ending part of the prompt
|
248 |
+
if output_duration*50 != prompt.shape[-1]:
|
249 |
+
ending = stage2_generate(model, prompt[:, output_duration*50:], batch_size=1)
|
250 |
+
output = np.concatenate([output, ending], axis=0)
|
251 |
+
output = codectool_stage2.ids2npy(output)
|
252 |
+
|
253 |
+
# Fix invalid codes (a dirty solution, which may harm the quality of audio)
|
254 |
+
# We are trying to find better one
|
255 |
+
fixed_output = copy.deepcopy(output)
|
256 |
+
for i, line in enumerate(output):
|
257 |
+
for j, element in enumerate(line):
|
258 |
+
if element < 0 or element > 1023:
|
259 |
+
counter = Counter(line)
|
260 |
+
most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
|
261 |
+
fixed_output[i, j] = most_frequant
|
262 |
+
# save output
|
263 |
+
np.save(output_filename, fixed_output)
|
264 |
+
stage2_result.append(output_filename)
|
265 |
+
return stage2_result
|
266 |
+
|
267 |
+
|
268 |
+
@spaces.GPU(duration=120)
|
269 |
def generate_music(
|
270 |
max_new_tokens=5,
|
271 |
run_n_segments=2,
|
|
|
289 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
290 |
os.makedirs(stage2_output_dir, exist_ok=True)
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
stage1_output_set = []
|
293 |
|
294 |
genres = genre_txt.strip()
|
|
|
403 |
stage1_output_set.append(vocal_save_path)
|
404 |
stage1_output_set.append(inst_save_path)
|
405 |
|
406 |
+
print("Stage 2 inference...")
|
407 |
+
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=1) # set batch_size=1 for gradio demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
print('Stage 2 DONE.\n')
|
409 |
|
410 |
print("Converting to Audio...")
|
|
|
419 |
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
420 |
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
421 |
|
422 |
+
# reconstruct tracks from stage 1
|
423 |
+
recons_output_dir = os.path.join(output_dir, "recons_stage1") # changed folder name to recons_stage1
|
424 |
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
425 |
os.makedirs(recons_mix_dir, exist_ok=True)
|
426 |
+
tracks_stage1 = [] # changed variable name to tracks_stage1
|
427 |
+
for npy in stage1_output_set:
|
428 |
codec_result = np.load(npy)
|
429 |
+
decodec_rlt=[]
|
430 |
with torch.no_grad():
|
431 |
decoded_waveform = codec_model.decode(
|
432 |
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
|
|
|
434 |
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
435 |
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
436 |
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
437 |
+
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + "_stage1.mp3") # changed filename to include _stage1
|
438 |
+
tracks_stage1.append(save_path) # changed variable name to tracks_stage1
|
439 |
save_audio(decodec_rlt, save_path, 16000)
|
440 |
+
|
441 |
+
# reconstruct tracks from stage 2 and vocoder
|
442 |
+
recons_output_dir = os.path.join(output_dir, "recons_stage2_vocoder") # changed folder name to recons_stage2_vocoder
|
443 |
+
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
444 |
+
os.makedirs(recons_mix_dir, exist_ok=True)
|
445 |
+
tracks_stage2_vocoder = [] # changed variable name to tracks_stage2_vocoder
|
446 |
+
vocoder_stems_dir = os.path.join(recons_output_dir, 'stems') # vocoder output stems in recons_stage2_vocoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
448 |
+
|
449 |
+
vocal_output = None # initialize for mix error handling
|
450 |
+
instrumental_output = None # initialize for mix error handling
|
451 |
+
|
452 |
for npy in stage2_result:
|
453 |
if 'instrumental' in npy:
|
454 |
# Process instrumental
|
455 |
instrumental_output = process_audio(
|
456 |
npy,
|
457 |
+
os.path.join(vocoder_stems_dir, 'instrumental.mp3'), # vocoder output to vocoder_stems_dir
|
458 |
rescale,
|
459 |
+
None, # Removed args, use default vocoder args
|
460 |
inst_decoder,
|
461 |
codec_model
|
462 |
)
|
|
|
464 |
# Process vocal
|
465 |
vocal_output = process_audio(
|
466 |
npy,
|
467 |
+
os.path.join(vocoder_stems_dir, 'vocal.mp3'), # vocoder output to vocoder_stems_dir
|
468 |
rescale,
|
469 |
+
None, # Removed args, use default vocoder args
|
470 |
vocal_decoder,
|
471 |
codec_model
|
472 |
)
|
473 |
+
|
474 |
+
# mix tracks from vocoder output
|
475 |
try:
|
476 |
mix_output = instrumental_output + vocal_output
|
477 |
+
vocoder_mix = os.path.join(recons_mix_dir, 'mixed_stage2_vocoder.mp3') # mixed output in recons_stage2_vocoder, changed filename
|
478 |
+
save_audio(mix_output, vocoder_mix, 44100, rescale)
|
479 |
print(f"Created mix: {vocoder_mix}")
|
480 |
+
tracks_stage2_vocoder.append(vocoder_mix) # add mixed vocoder output path
|
481 |
except RuntimeError as e:
|
482 |
print(e)
|
483 |
+
vocoder_mix = None # set to None if mix failed
|
484 |
+
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape if instrumental_output is not None else 'None'}, vocal: {vocal_output.shape if vocal_output is not None else 'None'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
|
|
|
|
|
486 |
|
487 |
+
# mix tracks from stage 1
|
488 |
+
mixed_stage1_path = None
|
489 |
+
vocal_stage1_path = None
|
490 |
+
instrumental_stage1_path = None
|
491 |
+
for inst_path in tracks_stage1: # changed variable name to tracks_stage1
|
492 |
+
try:
|
493 |
+
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
|
494 |
+
and 'instrumental' in inst_path:
|
495 |
+
# find pair
|
496 |
+
vocal_path = inst_path.replace('instrumental', 'vocal')
|
497 |
+
if not os.path.exists(vocal_path):
|
498 |
+
continue
|
499 |
+
# mix
|
500 |
+
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental_stage1', 'mixed_stage1')) # changed mixed filename
|
501 |
+
vocal_stem, sr = sf.read(vocal_path)
|
502 |
+
instrumental_stem, _ = sf.read(inst_path)
|
503 |
+
mix_stem = (vocal_stem + instrumental_stem) / 1
|
504 |
+
|
505 |
+
sf.write(recons_mix, mix_stem, sr)
|
506 |
+
mixed_stage1_path = recons_mix # store mixed stage 1 path
|
507 |
+
vocal_stage1_path = vocal_path # store vocal stage 1 path
|
508 |
+
instrumental_stage1_path = inst_path # store instrumental stage 1 path
|
509 |
+
|
510 |
+
except Exception as e:
|
511 |
+
print(e)
|
512 |
+
|
513 |
+
|
514 |
+
# Post process - skip post process for gradio to simplify.
|
515 |
+
# recons_mix_final_path = os.path.join(output_dir, os.path.basename(mixed_stage1_path).replace('_stage1', '_final')) # final output path
|
516 |
+
# replace_low_freq_with_energy_matched(
|
517 |
+
# a_file=mixed_stage1_path, # 16kHz
|
518 |
+
# b_file=vocoder_mix, # 48kHz
|
519 |
+
# c_file=recons_mix_final_path,
|
520 |
+
# cutoff_freq=5500.0
|
521 |
+
# )
|
522 |
+
|
523 |
+
|
524 |
+
if vocoder_mix is not None: # return vocoder mix if successful
|
525 |
+
mixed_audio_data, sr_vocoder_mix = sf.read(vocoder_mix)
|
526 |
+
vocal_audio_data = None # stage 2 vocoder stems are not mixed and returned in this demo, set to None
|
527 |
+
instrumental_audio_data = None # stage 2 vocoder stems are not mixed and returned in this demo, set to None
|
528 |
+
return (sr_vocoder_mix, (mixed_audio_data * 32767).astype(np.int16)), vocal_audio_data, instrumental_audio_data
|
529 |
+
elif mixed_stage1_path is not None: # if vocoder failed, return stage 1 mix
|
530 |
+
mixed_audio_data_stage1, sr_stage1_mix = sf.read(mixed_stage1_path)
|
531 |
+
vocal_audio_data_stage1, sr_vocal_stage1 = sf.read(vocal_stage1_path)
|
532 |
+
instrumental_audio_data_stage1, sr_inst_stage1 = sf.read(instrumental_stage1_path)
|
533 |
+
return (sr_stage1_mix, (mixed_audio_data_stage1 * 32767).astype(np.int16)), (sr_vocal_stage1, (vocal_audio_data_stage1 * 32767).astype(np.int16)), (sr_inst_stage1, (instrumental_audio_data_stage1 * 32767).astype(np.int16))
|
534 |
+
else: # if both failed, return None
|
535 |
+
return None, None, None
|
536 |
+
|
537 |
+
|
538 |
+
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
|
539 |
# Execute the command
|
540 |
try:
|
541 |
mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
|
|
547 |
finally:
|
548 |
print("Temporary files deleted.")
|
549 |
|
550 |
+
|
551 |
# Gradio
|
552 |
with gr.Blocks() as demo:
|
553 |
with gr.Column():
|
|
|
575 |
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
|
576 |
submit_btn = gr.Button("Submit")
|
577 |
|
578 |
+
music_out = gr.Audio(label="Mixed Audio Result (Stage 2 + Vocoder)")
|
579 |
+
with gr.Accordion(label="Stage 1 Vocal and Instrumental Result", open=False):
|
580 |
+
vocal_out = gr.Audio(label="Vocal Audio (Stage 1)")
|
581 |
+
instrumental_out = gr.Audio(label="Instrumental Audio (Stage 1)")
|
582 |
|
583 |
gr.Examples(
|
584 |
examples=[
|