Spaces:
Running
on
Zero
Running
on
Zero
By deepseek prev was stable
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
-
import os
|
4 |
import shutil
|
5 |
import tempfile
|
6 |
import spaces
|
7 |
import torch
|
8 |
-
import
|
9 |
import sys
|
10 |
|
11 |
print("Installing flash-attn...")
|
@@ -16,7 +16,7 @@ subprocess.run(
|
|
16 |
shell=True,
|
17 |
)
|
18 |
|
19 |
-
from huggingface_hub import snapshot_download
|
20 |
|
21 |
# Create xcodec_mini_infer folder
|
22 |
folder_path = './xcodec_mini_infer'
|
@@ -29,8 +29,8 @@ else:
|
|
29 |
print(f"Folder already exists at: {folder_path}")
|
30 |
|
31 |
snapshot_download(
|
32 |
-
repo_id
|
33 |
-
local_dir
|
34 |
)
|
35 |
|
36 |
# Change to the "inference" directory
|
@@ -69,11 +69,12 @@ from models.soundstream_hubert_new import SoundStream
|
|
69 |
from vocoder import build_codec_model, process_audio
|
70 |
from post_process_audio import replace_low_freq_with_energy_matched
|
71 |
import re
|
|
|
72 |
|
73 |
def empty_output_folder(output_dir):
|
74 |
# List all files in the output directory
|
75 |
files = os.listdir(output_dir)
|
76 |
-
|
77 |
# Iterate over the files and remove them
|
78 |
for file in files:
|
79 |
file_path = os.path.join(output_dir, file)
|
@@ -87,37 +88,27 @@ def empty_output_folder(output_dir):
|
|
87 |
except Exception as e:
|
88 |
print(f"Error deleting file {file_path}: {e}")
|
89 |
|
90 |
-
# Function to create a temporary file with string content
|
91 |
-
def create_temp_file(content, prefix, suffix=".txt"):
|
92 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
|
93 |
-
# Ensure content ends with newline and normalize line endings
|
94 |
-
content = content.strip() + "\n\n" # Add extra newline at end
|
95 |
-
content = content.replace("\r\n", "\n").replace("\r", "\n")
|
96 |
-
temp_file.write(content)
|
97 |
-
temp_file.close()
|
98 |
-
|
99 |
-
# Debug: Print file contents
|
100 |
-
print(f"\nContent written to {prefix}{suffix}:")
|
101 |
-
print(content)
|
102 |
-
print("---")
|
103 |
-
|
104 |
-
return temp_file.name
|
105 |
-
|
106 |
device = "cuda:0"
|
107 |
|
|
|
108 |
model = AutoModelForCausalLM.from_pretrained(
|
109 |
-
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
110 |
torch_dtype=torch.float16,
|
111 |
-
attn_implementation="flash_attention_2",
|
112 |
-
|
113 |
model.to(device)
|
114 |
model.eval()
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
123 |
|
@@ -129,26 +120,53 @@ codec_model.load_state_dict(parameter_dict['codec_model'])
|
|
129 |
codec_model.to(device)
|
130 |
codec_model.eval()
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
def generate_music(
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
144 |
):
|
145 |
if use_audio_prompt and not audio_prompt_path:
|
146 |
-
raise FileNotFoundError(
|
147 |
-
|
148 |
-
max_new_tokens = max_new_tokens*100
|
149 |
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
150 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
151 |
-
|
152 |
class BlockTokenRangeProcessor(LogitsProcessor):
|
153 |
def __init__(self, start_id, end_id):
|
154 |
self.blocked_token_ids = list(range(start_id, end_id))
|
@@ -177,109 +195,158 @@ def generate_music(
|
|
177 |
stage1_output_set = []
|
178 |
|
179 |
genres = genre_txt.strip()
|
180 |
-
lyrics = split_lyrics(lyrics_txt+"\n")
|
181 |
# intruction
|
182 |
full_lyrics = "\n".join(lyrics)
|
183 |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
184 |
prompt_texts += lyrics
|
185 |
|
186 |
-
|
187 |
random_id = uuid.uuid4()
|
188 |
output_seq = None
|
189 |
# Here is suggested decoding config
|
190 |
top_p = 0.93
|
191 |
temperature = 1.0
|
192 |
-
repetition_penalty = 1.2
|
193 |
# special tokens
|
194 |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
195 |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
196 |
|
197 |
raw_output = None
|
|
|
198 |
|
199 |
# Format text prompt
|
200 |
-
run_n_segments = min(run_n_segments+1, len(lyrics))
|
201 |
|
202 |
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
|
203 |
|
204 |
-
for
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
else:
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
prompt_ids =
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
with torch.no_grad():
|
237 |
-
|
238 |
-
input_ids=
|
239 |
-
max_new_tokens=max_new_tokens,
|
240 |
-
min_new_tokens=100,
|
241 |
-
do_sample=True,
|
242 |
top_p=top_p,
|
243 |
-
temperature=temperature,
|
244 |
-
repetition_penalty=repetition_penalty,
|
245 |
eos_token_id=mmtokenizer.eoa,
|
246 |
pad_token_id=mmtokenizer.eoa,
|
247 |
-
logits_processor=LogitsProcessorList(
|
|
|
248 |
guidance_scale=guidance_scale,
|
249 |
use_cache=True,
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
251 |
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
252 |
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
253 |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
259 |
|
260 |
# save raw output and check sanity
|
261 |
ids = raw_output[0].cpu().numpy()
|
262 |
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
263 |
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
264 |
-
if len(soa_idx)!=len(eoa_idx):
|
265 |
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
266 |
|
267 |
vocals = []
|
268 |
instrumentals = []
|
269 |
range_begin = 1 if use_audio_prompt else 0
|
270 |
for i in range(range_begin, len(soa_idx)):
|
271 |
-
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
|
272 |
if codec_ids[0] == 32016:
|
273 |
codec_ids = codec_ids[1:]
|
274 |
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
275 |
-
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0])
|
276 |
vocals.append(vocals_ids)
|
277 |
-
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1])
|
278 |
instrumentals.append(instrumentals_ids)
|
279 |
vocals = np.concatenate(vocals, axis=1)
|
280 |
instrumentals = np.concatenate(instrumentals, axis=1)
|
281 |
-
vocal_save_path = os.path.join(stage1_output_dir,
|
282 |
-
|
|
|
|
|
|
|
|
|
283 |
np.save(vocal_save_path, vocals)
|
284 |
np.save(inst_save_path, instrumentals)
|
285 |
stage1_output_set.append(vocal_save_path)
|
@@ -296,6 +363,7 @@ def generate_music(
|
|
296 |
max_val = wav.abs().max()
|
297 |
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
298 |
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
|
|
299 |
# reconstruct tracks
|
300 |
recons_output_dir = os.path.join(output_dir, "recons")
|
301 |
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
@@ -303,9 +371,11 @@ def generate_music(
|
|
303 |
tracks = []
|
304 |
for npy in stage1_output_set:
|
305 |
codec_result = np.load(npy)
|
306 |
-
decodec_rlt=[]
|
307 |
with torch.no_grad():
|
308 |
-
decoded_waveform = codec_model.decode(
|
|
|
|
|
309 |
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
310 |
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
311 |
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
@@ -316,7 +386,7 @@ def generate_music(
|
|
316 |
for inst_path in tracks:
|
317 |
try:
|
318 |
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
|
319 |
-
|
320 |
# find pair
|
321 |
vocal_path = inst_path.replace('instrumental', 'vocal')
|
322 |
if not os.path.exists(vocal_path):
|
@@ -329,7 +399,6 @@ def generate_music(
|
|
329 |
sf.write(recons_mix, mix_stem, sr)
|
330 |
except Exception as e:
|
331 |
print(e)
|
332 |
-
|
333 |
|
334 |
# vocoder to upsample audios
|
335 |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
@@ -338,53 +407,41 @@ def generate_music(
|
|
338 |
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
|
339 |
os.makedirs(vocoder_mix_dir, exist_ok=True)
|
340 |
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
)
|
364 |
-
# mix tracks
|
365 |
-
try:
|
366 |
-
mix_output = instrumental_output + vocal_output
|
367 |
-
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
|
368 |
-
save_audio(mix_output, vocoder_mix, 44100, rescale)
|
369 |
-
print(f"Created mix: {vocoder_mix}")
|
370 |
-
except RuntimeError as e:
|
371 |
-
print(e)
|
372 |
-
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
|
373 |
|
374 |
# Post process
|
375 |
replace_low_freq_with_energy_matched(
|
376 |
-
a_file=recons_mix,
|
377 |
-
b_file=vocoder_mix,
|
378 |
c_file=os.path.join(output_dir, os.path.basename(recons_mix)),
|
379 |
cutoff_freq=5500.0
|
380 |
)
|
381 |
print("All process Done")
|
382 |
return recons_mix
|
383 |
|
384 |
-
|
385 |
@spaces.GPU(duration=120)
|
386 |
-
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=
|
387 |
-
|
388 |
# Ensure the output folder exists
|
389 |
output_dir = "./output"
|
390 |
os.makedirs(output_dir, exist_ok=True)
|
@@ -394,15 +451,16 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=
|
|
394 |
|
395 |
# Execute the command
|
396 |
try:
|
397 |
-
music = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
|
|
398 |
return music
|
399 |
except Exception as e:
|
400 |
gr.Warning("An Error Occured: " + str(e))
|
401 |
-
return
|
402 |
finally:
|
403 |
print("Temporary files deleted.")
|
404 |
|
405 |
-
# Gradio
|
406 |
|
407 |
with gr.Blocks() as demo:
|
408 |
with gr.Column():
|
@@ -424,15 +482,16 @@ with gr.Blocks() as demo:
|
|
424 |
with gr.Column():
|
425 |
genre_txt = gr.Textbox(label="Genre")
|
426 |
lyrics_txt = gr.Textbox(label="Lyrics")
|
427 |
-
|
428 |
with gr.Column():
|
429 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
430 |
-
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=5,
|
|
|
431 |
submit_btn = gr.Button("Submit")
|
432 |
music_out = gr.Audio(label="Audio Result")
|
433 |
|
434 |
gr.Examples(
|
435 |
-
examples
|
436 |
[
|
437 |
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
438 |
"""[verse]
|
@@ -467,17 +526,17 @@ Through the highs and lows, I'mma keep it real
|
|
467 |
Living out my dreams with this mic and a deal
|
468 |
"""
|
469 |
]
|
470 |
-
],
|
471 |
-
|
472 |
-
outputs
|
473 |
-
cache_examples
|
474 |
cache_mode="eager",
|
475 |
fn=infer
|
476 |
)
|
477 |
-
|
478 |
submit_btn.click(
|
479 |
-
fn
|
480 |
-
inputs
|
481 |
-
outputs
|
482 |
)
|
483 |
-
demo.queue().launch(show_error=True)
|
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
+
import os
|
4 |
import shutil
|
5 |
import tempfile
|
6 |
import spaces
|
7 |
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
import sys
|
10 |
|
11 |
print("Installing flash-attn...")
|
|
|
16 |
shell=True,
|
17 |
)
|
18 |
|
19 |
+
from huggingface_hub import snapshot_download
|
20 |
|
21 |
# Create xcodec_mini_infer folder
|
22 |
folder_path = './xcodec_mini_infer'
|
|
|
29 |
print(f"Folder already exists at: {folder_path}")
|
30 |
|
31 |
snapshot_download(
|
32 |
+
repo_id="m-a-p/xcodec_mini_infer",
|
33 |
+
local_dir="./xcodec_mini_infer"
|
34 |
)
|
35 |
|
36 |
# Change to the "inference" directory
|
|
|
69 |
from vocoder import build_codec_model, process_audio
|
70 |
from post_process_audio import replace_low_freq_with_energy_matched
|
71 |
import re
|
72 |
+
import multiprocessing
|
73 |
|
74 |
def empty_output_folder(output_dir):
|
75 |
# List all files in the output directory
|
76 |
files = os.listdir(output_dir)
|
77 |
+
|
78 |
# Iterate over the files and remove them
|
79 |
for file in files:
|
80 |
file_path = os.path.join(output_dir, file)
|
|
|
88 |
except Exception as e:
|
89 |
print(f"Error deleting file {file_path}: {e}")
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
device = "cuda:0"
|
92 |
|
93 |
+
# --- Model Loading and Quantization ---
|
94 |
model = AutoModelForCausalLM.from_pretrained(
|
95 |
+
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
96 |
torch_dtype=torch.float16,
|
97 |
+
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
|
98 |
+
)
|
99 |
model.to(device)
|
100 |
model.eval()
|
101 |
|
102 |
+
# Apply dynamic quantization
|
103 |
+
model = torch.quantization.quantize_dynamic(
|
104 |
+
model, {torch.nn.Linear}, dtype=torch.qint8
|
105 |
+
)
|
106 |
+
|
107 |
+
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
|
108 |
+
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
109 |
+
config_path = './xcodec_mini_infer/decoders/config.yaml'
|
110 |
+
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
|
111 |
+
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
|
112 |
|
113 |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
114 |
|
|
|
120 |
codec_model.to(device)
|
121 |
codec_model.eval()
|
122 |
|
123 |
+
# --- Parallel Audio Processing ---
|
124 |
+
def process_audio_wrapper(args):
|
125 |
+
# Unpack arguments and call the original process_audio function
|
126 |
+
npy, output_path, rescale, other_args, decoder, codec_model = args
|
127 |
+
return process_audio(npy, output_path, rescale, other_args, decoder, codec_model)
|
128 |
+
|
129 |
+
def parallel_process_audio(stage1_output_set, vocoder_stems_dir, rescale, other_args, vocal_decoder, inst_decoder,
|
130 |
+
codec_model, num_processes=4):
|
131 |
+
with multiprocessing.Pool(processes=num_processes) as pool:
|
132 |
+
tasks = []
|
133 |
+
for npy in stage1_output_set:
|
134 |
+
if 'instrumental' in npy:
|
135 |
+
output_path = os.path.join(vocoder_stems_dir, 'instrumental.mp3')
|
136 |
+
decoder = inst_decoder
|
137 |
+
else:
|
138 |
+
output_path = os.path.join(vocoder_stems_dir, 'vocal.mp3')
|
139 |
+
decoder = vocal_decoder
|
140 |
+
tasks.append((npy, output_path, rescale, other_args, decoder, codec_model))
|
141 |
+
|
142 |
+
results = pool.map(process_audio_wrapper, tasks)
|
143 |
+
|
144 |
+
return results
|
145 |
+
|
146 |
+
# --- Optimized Music Generation ---
|
147 |
def generate_music(
|
148 |
+
max_new_tokens=5,
|
149 |
+
run_n_segments=2,
|
150 |
+
genre_txt=None,
|
151 |
+
lyrics_txt=None,
|
152 |
+
use_audio_prompt=False,
|
153 |
+
audio_prompt_path="",
|
154 |
+
prompt_start_time=0.0,
|
155 |
+
prompt_end_time=30.0,
|
156 |
+
output_dir="./output",
|
157 |
+
rescale=False,
|
158 |
+
beam_width=3, # Add beam search
|
159 |
+
length_penalty=1.0, # Add length penalty
|
160 |
+
repetition_penalty=1.5, # Add repetition penalty
|
161 |
+
batch_size=2
|
162 |
):
|
163 |
if use_audio_prompt and not audio_prompt_path:
|
164 |
+
raise FileNotFoundError(
|
165 |
+
"Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
166 |
+
max_new_tokens = max_new_tokens * 100
|
167 |
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
168 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
169 |
+
|
170 |
class BlockTokenRangeProcessor(LogitsProcessor):
|
171 |
def __init__(self, start_id, end_id):
|
172 |
self.blocked_token_ids = list(range(start_id, end_id))
|
|
|
195 |
stage1_output_set = []
|
196 |
|
197 |
genres = genre_txt.strip()
|
198 |
+
lyrics = split_lyrics(lyrics_txt + "\n")
|
199 |
# intruction
|
200 |
full_lyrics = "\n".join(lyrics)
|
201 |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
202 |
prompt_texts += lyrics
|
203 |
|
|
|
204 |
random_id = uuid.uuid4()
|
205 |
output_seq = None
|
206 |
# Here is suggested decoding config
|
207 |
top_p = 0.93
|
208 |
temperature = 1.0
|
|
|
209 |
# special tokens
|
210 |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
211 |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
212 |
|
213 |
raw_output = None
|
214 |
+
segment_cache = {} # Cache for repeated segments
|
215 |
|
216 |
# Format text prompt
|
217 |
+
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
218 |
|
219 |
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
|
220 |
|
221 |
+
# Modified loop for batching and caching
|
222 |
+
for i in range(1, run_n_segments, batch_size):
|
223 |
+
batch_segments = []
|
224 |
+
batch_prompts = []
|
225 |
+
for j in range(i, min(i + batch_size, run_n_segments)):
|
226 |
+
section_text = prompt_texts[j].replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
227 |
+
|
228 |
+
# Check cache
|
229 |
+
if section_text in segment_cache:
|
230 |
+
cached_output = segment_cache[section_text]
|
231 |
+
if j > 1:
|
232 |
+
raw_output = torch.cat([raw_output, cached_output], dim=1)
|
233 |
+
else:
|
234 |
+
raw_output = cached_output
|
235 |
+
continue
|
236 |
+
|
237 |
+
batch_segments.append(section_text)
|
238 |
+
guidance_scale = 1.5 if j <= 1 else 1.2
|
239 |
+
|
240 |
+
if j == 1:
|
241 |
+
if use_audio_prompt:
|
242 |
+
audio_prompt = load_audio_mono(audio_prompt_path)
|
243 |
+
audio_prompt.unsqueeze_(0)
|
244 |
+
with torch.no_grad():
|
245 |
+
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
|
246 |
+
raw_codes = raw_codes.transpose(0, 1)
|
247 |
+
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
|
248 |
+
# Format audio prompt
|
249 |
+
code_ids = codectool.npy2ids(raw_codes[0])
|
250 |
+
audio_prompt_codec = code_ids[
|
251 |
+
int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec
|
252 |
+
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [
|
253 |
+
mmtokenizer.eoa]
|
254 |
+
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize(
|
255 |
+
"[end_of_reference]")
|
256 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
257 |
+
else:
|
258 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0])
|
259 |
+
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
260 |
else:
|
261 |
+
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [
|
262 |
+
mmtokenizer.soa] + codectool.sep_ids
|
263 |
+
|
264 |
+
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
265 |
+
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if j > 1 else prompt_ids
|
266 |
+
|
267 |
+
# Use window slicing in case output sequence exceeds the context of model
|
268 |
+
max_context = 16384 - max_new_tokens - 1
|
269 |
+
if input_ids.shape[-1] > max_context:
|
270 |
+
print(
|
271 |
+
f'Section {j}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
272 |
+
input_ids = input_ids[:, -(max_context):]
|
273 |
+
|
274 |
+
batch_prompts.append(input_ids)
|
275 |
+
|
276 |
+
if not batch_prompts:
|
277 |
+
continue # All segments in the batch were cached
|
278 |
+
|
279 |
+
# Pad prompts in the batch to the same length
|
280 |
+
max_len = max(p.size(1) for p in batch_prompts)
|
281 |
+
padded_prompts = []
|
282 |
+
for p in batch_prompts:
|
283 |
+
pad_len = max_len - p.size(1)
|
284 |
+
padded_prompt = F.pad(p, (0, pad_len), value=mmtokenizer.eoa)
|
285 |
+
padded_prompts.append(padded_prompt)
|
286 |
+
|
287 |
+
batch_input_ids = torch.cat(padded_prompts, dim=0)
|
288 |
+
|
289 |
with torch.no_grad():
|
290 |
+
output_seqs = model.generate(
|
291 |
+
input_ids=batch_input_ids,
|
292 |
+
max_new_tokens=max_new_tokens,
|
293 |
+
min_new_tokens=100,
|
294 |
+
do_sample=True,
|
295 |
top_p=top_p,
|
296 |
+
temperature=temperature,
|
297 |
+
repetition_penalty=repetition_penalty,
|
298 |
eos_token_id=mmtokenizer.eoa,
|
299 |
pad_token_id=mmtokenizer.eoa,
|
300 |
+
logits_processor=LogitsProcessorList(
|
301 |
+
[BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
|
302 |
guidance_scale=guidance_scale,
|
303 |
use_cache=True,
|
304 |
+
num_beams=beam_width, # Use beam search
|
305 |
+
length_penalty=length_penalty, # Apply length penalty
|
306 |
+
)
|
307 |
+
|
308 |
+
# Process each output in the batch
|
309 |
+
for k, output_seq in enumerate(output_seqs):
|
310 |
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
311 |
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
312 |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
313 |
+
if i > 1:
|
314 |
+
raw_output = torch.cat([raw_output, batch_prompts[k][:, :batch_input_ids.shape[-1]],
|
315 |
+
output_seq[:, batch_input_ids.shape[-1]:]], dim=1)
|
316 |
+
else:
|
317 |
+
raw_output = output_seq
|
318 |
+
|
319 |
+
# Cache the generated output if not already cached
|
320 |
+
if batch_segments[k] not in segment_cache:
|
321 |
+
segment_cache[batch_segments[k]] = output_seq[:, batch_input_ids.shape[-1]:].cpu()
|
322 |
|
323 |
# save raw output and check sanity
|
324 |
ids = raw_output[0].cpu().numpy()
|
325 |
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
326 |
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
327 |
+
if len(soa_idx) != len(eoa_idx):
|
328 |
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
329 |
|
330 |
vocals = []
|
331 |
instrumentals = []
|
332 |
range_begin = 1 if use_audio_prompt else 0
|
333 |
for i in range(range_begin, len(soa_idx)):
|
334 |
+
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
|
335 |
if codec_ids[0] == 32016:
|
336 |
codec_ids = codec_ids[1:]
|
337 |
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
338 |
+
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
|
339 |
vocals.append(vocals_ids)
|
340 |
+
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
|
341 |
instrumentals.append(instrumentals_ids)
|
342 |
vocals = np.concatenate(vocals, axis=1)
|
343 |
instrumentals = np.concatenate(instrumentals, axis=1)
|
344 |
+
vocal_save_path = os.path.join(stage1_output_dir,
|
345 |
+
f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace(
|
346 |
+
'.', '@') + '.npy')
|
347 |
+
inst_save_path = os.path.join(stage1_output_dir,
|
348 |
+
f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace(
|
349 |
+
'.', '@') + '.npy')
|
350 |
np.save(vocal_save_path, vocals)
|
351 |
np.save(inst_save_path, instrumentals)
|
352 |
stage1_output_set.append(vocal_save_path)
|
|
|
363 |
max_val = wav.abs().max()
|
364 |
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
365 |
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
366 |
+
|
367 |
# reconstruct tracks
|
368 |
recons_output_dir = os.path.join(output_dir, "recons")
|
369 |
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
|
|
371 |
tracks = []
|
372 |
for npy in stage1_output_set:
|
373 |
codec_result = np.load(npy)
|
374 |
+
decodec_rlt = []
|
375 |
with torch.no_grad():
|
376 |
+
decoded_waveform = codec_model.decode(
|
377 |
+
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
|
378 |
+
device))
|
379 |
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
380 |
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
381 |
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
|
|
386 |
for inst_path in tracks:
|
387 |
try:
|
388 |
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
|
389 |
+
and 'instrumental' in inst_path:
|
390 |
# find pair
|
391 |
vocal_path = inst_path.replace('instrumental', 'vocal')
|
392 |
if not os.path.exists(vocal_path):
|
|
|
399 |
sf.write(recons_mix, mix_stem, sr)
|
400 |
except Exception as e:
|
401 |
print(e)
|
|
|
402 |
|
403 |
# vocoder to upsample audios
|
404 |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
|
|
407 |
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
|
408 |
os.makedirs(vocoder_mix_dir, exist_ok=True)
|
409 |
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
410 |
+
|
411 |
+
# Use parallel processing for vocoding
|
412 |
+
parallel_process_audio(stage1_output_set, vocoder_stems_dir, rescale, argparse.Namespace(**locals()), vocal_decoder,
|
413 |
+
inst_decoder, codec_model)
|
414 |
+
|
415 |
+
# mix tracks after parallel processing
|
416 |
+
instrumental_output_path = os.path.join(vocoder_stems_dir, 'instrumental.mp3')
|
417 |
+
vocal_output_path = os.path.join(vocoder_stems_dir, 'vocal.mp3')
|
418 |
+
|
419 |
+
if os.path.exists(instrumental_output_path) and os.path.exists(vocal_output_path):
|
420 |
+
instrumental_output, sr = torchaudio.load(instrumental_output_path)
|
421 |
+
vocal_output, _ = torchaudio.load(vocal_output_path)
|
422 |
+
try:
|
423 |
+
mix_output = instrumental_output + vocal_output
|
424 |
+
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
|
425 |
+
save_audio(mix_output, vocoder_mix, 44100, rescale)
|
426 |
+
print(f"Created mix: {vocoder_mix}")
|
427 |
+
except RuntimeError as e:
|
428 |
+
print(e)
|
429 |
+
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
|
430 |
+
else:
|
431 |
+
print("Skipping mix creation, instrumental or vocal output missing.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
|
433 |
# Post process
|
434 |
replace_low_freq_with_energy_matched(
|
435 |
+
a_file=recons_mix, # 16kHz
|
436 |
+
b_file=vocoder_mix, # 48kHz
|
437 |
c_file=os.path.join(output_dir, os.path.basename(recons_mix)),
|
438 |
cutoff_freq=5500.0
|
439 |
)
|
440 |
print("All process Done")
|
441 |
return recons_mix
|
442 |
|
|
|
443 |
@spaces.GPU(duration=120)
|
444 |
+
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=5):
|
|
|
445 |
# Ensure the output folder exists
|
446 |
output_dir = "./output"
|
447 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
451 |
|
452 |
# Execute the command
|
453 |
try:
|
454 |
+
music = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
455 |
+
output_dir=output_dir, cuda_idx=0, max_new_tokens=max_new_tokens)
|
456 |
return music
|
457 |
except Exception as e:
|
458 |
gr.Warning("An Error Occured: " + str(e))
|
459 |
+
return None
|
460 |
finally:
|
461 |
print("Temporary files deleted.")
|
462 |
|
463 |
+
# Gradio
|
464 |
|
465 |
with gr.Blocks() as demo:
|
466 |
with gr.Column():
|
|
|
482 |
with gr.Column():
|
483 |
genre_txt = gr.Textbox(label="Genre")
|
484 |
lyrics_txt = gr.Textbox(label="Lyrics")
|
485 |
+
|
486 |
with gr.Column():
|
487 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
488 |
+
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=5,
|
489 |
+
interactive=True)
|
490 |
submit_btn = gr.Button("Submit")
|
491 |
music_out = gr.Audio(label="Audio Result")
|
492 |
|
493 |
gr.Examples(
|
494 |
+
examples=[
|
495 |
[
|
496 |
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
497 |
"""[verse]
|
|
|
526 |
Living out my dreams with this mic and a deal
|
527 |
"""
|
528 |
]
|
529 |
+
],
|
530 |
+
inputs=[genre_txt, lyrics_txt],
|
531 |
+
outputs=[music_out],
|
532 |
+
cache_examples=True,
|
533 |
cache_mode="eager",
|
534 |
fn=infer
|
535 |
)
|
536 |
+
|
537 |
submit_btn.click(
|
538 |
+
fn=infer,
|
539 |
+
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
540 |
+
outputs=[music_out]
|
541 |
)
|
542 |
+
demo.queue().launch(show_error=True)
|