Spaces:
Running
on
Zero
Running
on
Zero
by depseek
Browse files
app.py
CHANGED
@@ -7,27 +7,25 @@ import spaces
|
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
8 |
import torch
|
9 |
from huggingface_hub import snapshot_download
|
|
|
10 |
import uuid
|
11 |
-
import
|
12 |
-
|
13 |
-
from
|
14 |
import torchaudio
|
15 |
from torchaudio.transforms import Resample
|
16 |
import soundfile as sf
|
17 |
-
from
|
18 |
-
|
|
|
|
|
|
|
19 |
import re
|
20 |
-
import sys
|
21 |
-
from collections import Counter
|
22 |
|
23 |
-
# --- Constants and Setup ---
|
24 |
-
IS_SHARED_UI = "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '')
|
25 |
-
OUTPUT_DIR = "./output"
|
26 |
-
XCODEC_MINI_INFER_DIR = "./xcodec_mini_infer"
|
27 |
-
MODEL_ID = "m-a-p/YuE-s1-7B-anneal-en-cot"
|
28 |
|
|
|
29 |
|
30 |
-
# Install
|
31 |
def install_flash_attn():
|
32 |
try:
|
33 |
print("Installing flash-attn...")
|
@@ -36,39 +34,56 @@ def install_flash_attn():
|
|
36 |
"pip install flash-attn --no-build-isolation",
|
37 |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
38 |
shell=True,
|
39 |
-
check=True # Use check=True to raise an exception on failure
|
40 |
)
|
41 |
print("flash-attn installed successfully!")
|
42 |
except subprocess.CalledProcessError as e:
|
43 |
print(f"Failed to install flash-attn: {e}")
|
44 |
exit(1)
|
45 |
|
46 |
-
|
47 |
install_flash_attn()
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
else:
|
57 |
-
print(f"Folder already exists at: {XCODEC_MINI_INFER_DIR}")
|
58 |
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
# Add xcodec paths
|
62 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
63 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
def empty_output_folder(output_dir):
|
71 |
-
"""Empties the output folder."""
|
72 |
for file in os.listdir(output_dir):
|
73 |
file_path = os.path.join(output_dir, file)
|
74 |
try:
|
@@ -79,30 +94,24 @@ def empty_output_folder(output_dir):
|
|
79 |
except Exception as e:
|
80 |
print(f"Error deleting file {file_path}: {e}")
|
81 |
|
82 |
-
|
83 |
def create_temp_file(content, prefix, suffix=".txt"):
|
84 |
-
"""Creates a temporary file with content."""
|
85 |
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
|
86 |
content = content.strip() + "\n\n"
|
87 |
content = content.replace("\r\n", "\n").replace("\r", "\n")
|
88 |
temp_file.write(content)
|
89 |
temp_file.close()
|
90 |
-
print(f"\nContent written to {prefix}{suffix}:\n{content}\n---")
|
91 |
return temp_file.name
|
92 |
|
93 |
|
94 |
def get_last_mp3_file(output_dir):
|
95 |
-
"""Gets the most recently modified MP3 file in a directory."""
|
96 |
mp3_files = [file for file in os.listdir(output_dir) if file.endswith('.mp3')]
|
97 |
if not mp3_files:
|
98 |
print("No .mp3 files found in the output folder.")
|
99 |
return None
|
100 |
mp3_files_with_path = [os.path.join(output_dir, file) for file in mp3_files]
|
101 |
-
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
|
102 |
return mp3_files_with_path[0]
|
103 |
|
104 |
-
|
105 |
-
|
106 |
class BlockTokenRangeProcessor(LogitsProcessor):
|
107 |
def __init__(self, start_id, end_id):
|
108 |
self.blocked_token_ids = list(range(start_id, end_id))
|
@@ -111,9 +120,7 @@ class BlockTokenRangeProcessor(LogitsProcessor):
|
|
111 |
scores[:, self.blocked_token_ids] = -float("inf")
|
112 |
return scores
|
113 |
|
114 |
-
|
115 |
def load_audio_mono(filepath, sampling_rate=16000):
|
116 |
-
"""Loads an audio file and converts to mono, optionally resamples."""
|
117 |
audio, sr = torchaudio.load(filepath)
|
118 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
119 |
if sr != sampling_rate:
|
@@ -121,17 +128,13 @@ def load_audio_mono(filepath, sampling_rate=16000):
|
|
121 |
audio = resampler(audio)
|
122 |
return audio
|
123 |
|
124 |
-
|
125 |
def split_lyrics(lyrics: str):
|
126 |
-
"""Splits lyrics into segments based on bracketed headers."""
|
127 |
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
128 |
segments = re.findall(pattern, lyrics, re.DOTALL)
|
129 |
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
130 |
return structured_lyrics
|
131 |
|
132 |
-
|
133 |
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
134 |
-
"""Saves an audio tensor to disk."""
|
135 |
folder_path = os.path.dirname(path)
|
136 |
if not os.path.exists(folder_path):
|
137 |
os.makedirs(folder_path)
|
@@ -141,226 +144,166 @@ def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False)
|
|
141 |
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
142 |
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
raw_output = None
|
203 |
-
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
204 |
-
|
205 |
-
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
|
206 |
-
|
207 |
-
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
208 |
-
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
209 |
-
guidance_scale = 1.5 if i <= 1 else 1.2
|
210 |
-
if i == 0:
|
211 |
-
continue
|
212 |
-
if i == 1:
|
213 |
-
if use_audio_prompt:
|
214 |
-
audio_prompt = load_audio_mono(audio_prompt_path)
|
215 |
-
audio_prompt.unsqueeze_(0)
|
216 |
-
with torch.no_grad():
|
217 |
-
raw_codes = self.codec_model.encode(audio_prompt.to(self.device), target_bw=0.5)
|
218 |
-
raw_codes = raw_codes.transpose(0, 1)
|
219 |
-
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
|
220 |
-
code_ids = self.codectool.npy2ids(raw_codes[0])
|
221 |
-
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
|
222 |
-
audio_prompt_codec_ids = [self.mmtokenizer.soa] + self.codectool.sep_ids + audio_prompt_codec + [self.mmtokenizer.eoa]
|
223 |
-
sentence_ids = self.mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + self.mmtokenizer.tokenize(
|
224 |
-
"[end_of_reference]")
|
225 |
-
head_id = self.mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
226 |
-
else:
|
227 |
-
head_id = self.mmtokenizer.tokenize(prompt_texts[0])
|
228 |
-
prompt_ids = head_id + start_of_segment + self.mmtokenizer.tokenize(section_text) + [self.mmtokenizer.soa] + self.codectool.sep_ids
|
229 |
else:
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
251 |
)
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
codec_ids =
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
|
327 |
-
vocal_stem, sr = sf.read(inst_path)
|
328 |
-
instrumental_stem, _ = sf.read(vocal_path)
|
329 |
-
mix_stem = (vocal_stem + instrumental_stem) / 1
|
330 |
-
sf.write(recons_mix, mix_stem, sr)
|
331 |
-
except Exception as e:
|
332 |
-
print(e)
|
333 |
-
|
334 |
-
return recons_mix
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
# --- Gradio Interface ---
|
339 |
-
music_generator = MusicGenerator() # Initialize the music generator here to keep the model loaded
|
340 |
-
|
341 |
-
@spaces.GPU(duration=120)
|
342 |
-
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200):
|
343 |
-
"""Inference function for the Gradio interface."""
|
344 |
-
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
345 |
-
print(f"Output folder ensured at: {OUTPUT_DIR}")
|
346 |
-
empty_output_folder(OUTPUT_DIR)
|
347 |
-
|
348 |
-
try:
|
349 |
-
music = music_generator.generate(
|
350 |
-
genre_txt=genre_txt_content,
|
351 |
-
lyrics_txt=lyrics_txt_content,
|
352 |
-
run_n_segments=num_segments,
|
353 |
-
output_dir=OUTPUT_DIR,
|
354 |
-
max_new_tokens=max_new_tokens
|
355 |
-
)
|
356 |
-
return music
|
357 |
-
except Exception as e:
|
358 |
-
print(f"Error occurred during inference: {e}")
|
359 |
-
return None
|
360 |
-
finally:
|
361 |
-
print("Temporary files deleted.")
|
362 |
-
|
363 |
|
|
|
364 |
with gr.Blocks() as demo:
|
365 |
with gr.Column():
|
366 |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
|
@@ -368,7 +311,7 @@ with gr.Blocks() as demo:
|
|
368 |
<div style="display:flex;column-gap:4px;">
|
369 |
<a href="https://github.com/multimodal-art-projection/YuE">
|
370 |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
|
371 |
-
</a>
|
372 |
<a href="https://map-yue.github.io">
|
373 |
<img src='https://img.shields.io/badge/Project-Page-green'>
|
374 |
</a>
|
@@ -381,9 +324,9 @@ with gr.Blocks() as demo:
|
|
381 |
with gr.Column():
|
382 |
genre_txt = gr.Textbox(label="Genre")
|
383 |
lyrics_txt = gr.Textbox(label="Lyrics")
|
384 |
-
|
385 |
with gr.Column():
|
386 |
-
if
|
387 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
388 |
max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second long music", minimum=100, maximum="3000", step=100, value=500, interactive=True)
|
389 |
else:
|
@@ -393,7 +336,7 @@ with gr.Blocks() as demo:
|
|
393 |
music_out = gr.Audio(label="Audio Result")
|
394 |
|
395 |
gr.Examples(
|
396 |
-
examples=[
|
397 |
[
|
398 |
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
399 |
"""[verse]
|
@@ -428,17 +371,17 @@ Through the highs and lows, I'mma keep it real
|
|
428 |
Living out my dreams with this mic and a deal
|
429 |
"""
|
430 |
]
|
431 |
-
],
|
432 |
-
|
433 |
-
outputs=[music_out],
|
434 |
-
cache_examples=False,
|
435 |
-
# cache_mode="lazy",
|
436 |
-
fn=
|
437 |
)
|
438 |
-
|
439 |
submit_btn.click(
|
440 |
-
fn=
|
441 |
-
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
442 |
-
outputs=[music_out]
|
443 |
)
|
444 |
demo.queue().launch(show_api=False, show_error=True)
|
|
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
8 |
import torch
|
9 |
from huggingface_hub import snapshot_download
|
10 |
+
import sys
|
11 |
import uuid
|
12 |
+
import numpy as np
|
13 |
+
import json
|
14 |
+
from omegaconf import OmegaConf
|
15 |
import torchaudio
|
16 |
from torchaudio.transforms import Resample
|
17 |
import soundfile as sf
|
18 |
+
from tqdm import tqdm
|
19 |
+
from einops import rearrange
|
20 |
+
import time
|
21 |
+
from codecmanipulator import CodecManipulator
|
22 |
+
from mmtokenizer import _MMSentencePieceTokenizer
|
23 |
import re
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
is_shared_ui = True if "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '') else False
|
27 |
|
28 |
+
# Install required package
|
29 |
def install_flash_attn():
|
30 |
try:
|
31 |
print("Installing flash-attn...")
|
|
|
34 |
"pip install flash-attn --no-build-isolation",
|
35 |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
36 |
shell=True,
|
|
|
37 |
)
|
38 |
print("flash-attn installed successfully!")
|
39 |
except subprocess.CalledProcessError as e:
|
40 |
print(f"Failed to install flash-attn: {e}")
|
41 |
exit(1)
|
42 |
|
43 |
+
# Install flash-attn
|
44 |
install_flash_attn()
|
45 |
|
46 |
+
# Download xcodec_mini_infer
|
47 |
+
folder_path = './xcodec_mini_infer'
|
48 |
+
if not os.path.exists(folder_path):
|
49 |
+
os.makedirs(folder_path, exist_ok=True)
|
50 |
+
print(f"Folder created at: {folder_path}")
|
51 |
+
else:
|
52 |
+
print(f"Folder already exists at: {folder_path}")
|
|
|
|
|
53 |
|
54 |
+
snapshot_download(
|
55 |
+
repo_id = "m-a-p/xcodec_mini_infer",
|
56 |
+
local_dir = "./xcodec_mini_infer"
|
57 |
+
)
|
58 |
|
59 |
+
# Add to path
|
|
|
60 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
61 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
62 |
+
|
63 |
+
# Load Model (do this ONCE)
|
64 |
+
print("Loading Models...")
|
65 |
+
device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
68 |
+
torch_dtype=torch.float16,
|
69 |
+
attn_implementation="flash_attention_2",
|
70 |
+
).to(device).eval()
|
71 |
+
|
72 |
+
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
73 |
+
|
74 |
+
codectool = CodecManipulator("xcodec", 0, 1)
|
75 |
+
model_config = OmegaConf.load('./xcodec_mini_infer/final_ckpt/config.yaml')
|
76 |
+
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
77 |
+
parameter_dict = torch.load('./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', map_location='cpu')
|
78 |
+
codec_model.load_state_dict(parameter_dict['codec_model'])
|
79 |
+
codec_model.to(device)
|
80 |
+
codec_model.eval()
|
81 |
+
|
82 |
+
print("Models Loaded!")
|
83 |
+
|
84 |
+
|
85 |
|
86 |
def empty_output_folder(output_dir):
|
|
|
87 |
for file in os.listdir(output_dir):
|
88 |
file_path = os.path.join(output_dir, file)
|
89 |
try:
|
|
|
94 |
except Exception as e:
|
95 |
print(f"Error deleting file {file_path}: {e}")
|
96 |
|
|
|
97 |
def create_temp_file(content, prefix, suffix=".txt"):
|
|
|
98 |
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
|
99 |
content = content.strip() + "\n\n"
|
100 |
content = content.replace("\r\n", "\n").replace("\r", "\n")
|
101 |
temp_file.write(content)
|
102 |
temp_file.close()
|
|
|
103 |
return temp_file.name
|
104 |
|
105 |
|
106 |
def get_last_mp3_file(output_dir):
|
|
|
107 |
mp3_files = [file for file in os.listdir(output_dir) if file.endswith('.mp3')]
|
108 |
if not mp3_files:
|
109 |
print("No .mp3 files found in the output folder.")
|
110 |
return None
|
111 |
mp3_files_with_path = [os.path.join(output_dir, file) for file in mp3_files]
|
112 |
+
mp3_files_with_path.sort(key=lambda x: os.path.getmtime(x), reverse=True)
|
113 |
return mp3_files_with_path[0]
|
114 |
|
|
|
|
|
115 |
class BlockTokenRangeProcessor(LogitsProcessor):
|
116 |
def __init__(self, start_id, end_id):
|
117 |
self.blocked_token_ids = list(range(start_id, end_id))
|
|
|
120 |
scores[:, self.blocked_token_ids] = -float("inf")
|
121 |
return scores
|
122 |
|
|
|
123 |
def load_audio_mono(filepath, sampling_rate=16000):
|
|
|
124 |
audio, sr = torchaudio.load(filepath)
|
125 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
126 |
if sr != sampling_rate:
|
|
|
128 |
audio = resampler(audio)
|
129 |
return audio
|
130 |
|
|
|
131 |
def split_lyrics(lyrics: str):
|
|
|
132 |
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
133 |
segments = re.findall(pattern, lyrics, re.DOTALL)
|
134 |
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
135 |
return structured_lyrics
|
136 |
|
|
|
137 |
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
|
|
138 |
folder_path = os.path.dirname(path)
|
139 |
if not os.path.exists(folder_path):
|
140 |
os.makedirs(folder_path)
|
|
|
144 |
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
145 |
|
146 |
|
147 |
+
@spaces.GPU(duration=120)
|
148 |
+
def generate_music(
|
149 |
+
genre_txt=None,
|
150 |
+
lyrics_txt=None,
|
151 |
+
max_new_tokens=3000,
|
152 |
+
run_n_segments=2,
|
153 |
+
use_audio_prompt=False,
|
154 |
+
audio_prompt_path="",
|
155 |
+
prompt_start_time=0.0,
|
156 |
+
prompt_end_time=30.0,
|
157 |
+
output_dir="./output",
|
158 |
+
keep_intermediate=False,
|
159 |
+
cuda_idx=0,
|
160 |
+
rescale=False,
|
161 |
+
):
|
162 |
+
|
163 |
+
if use_audio_prompt and not audio_prompt_path:
|
164 |
+
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
165 |
+
|
166 |
+
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
167 |
+
os.makedirs(stage1_output_dir, exist_ok=True)
|
168 |
+
|
169 |
+
stage1_output_set = []
|
170 |
+
genres = genre_txt.strip()
|
171 |
+
lyrics = split_lyrics(lyrics_txt+"\n")
|
172 |
+
full_lyrics = "\n".join(lyrics)
|
173 |
+
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
174 |
+
prompt_texts += lyrics
|
175 |
+
random_id = uuid.uuid4()
|
176 |
+
output_seq = None
|
177 |
+
top_p = 0.93
|
178 |
+
temperature = 1.0
|
179 |
+
repetition_penalty = 1.2
|
180 |
+
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
181 |
+
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
182 |
+
|
183 |
+
raw_output = None
|
184 |
+
run_n_segments = min(run_n_segments+1, len(lyrics))
|
185 |
+
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
|
186 |
+
|
187 |
+
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
188 |
+
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
189 |
+
guidance_scale = 1.5 if i <=1 else 1.2
|
190 |
+
if i==0:
|
191 |
+
continue
|
192 |
+
if i==1:
|
193 |
+
if use_audio_prompt:
|
194 |
+
audio_prompt = load_audio_mono(audio_prompt_path)
|
195 |
+
audio_prompt.unsqueeze_(0)
|
196 |
+
with torch.no_grad():
|
197 |
+
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
|
198 |
+
raw_codes = raw_codes.transpose(0, 1)
|
199 |
+
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
|
200 |
+
code_ids = codectool.npy2ids(raw_codes[0])
|
201 |
+
audio_prompt_codec = code_ids[int(prompt_start_time *50): int(prompt_end_time *50)]
|
202 |
+
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
|
203 |
+
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
|
204 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
else:
|
206 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0])
|
207 |
+
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
208 |
+
else:
|
209 |
+
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
210 |
+
|
211 |
+
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
212 |
+
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
|
213 |
+
max_context = 16384-max_new_tokens-1
|
214 |
+
if input_ids.shape[-1] > max_context:
|
215 |
+
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
216 |
+
input_ids = input_ids[:, -(max_context):]
|
217 |
+
with torch.no_grad():
|
218 |
+
output_seq = model.generate(
|
219 |
+
input_ids=input_ids,
|
220 |
+
max_new_tokens=max_new_tokens,
|
221 |
+
min_new_tokens=100,
|
222 |
+
do_sample=True,
|
223 |
+
top_p=top_p,
|
224 |
+
temperature=temperature,
|
225 |
+
repetition_penalty=repetition_penalty,
|
226 |
+
eos_token_id=mmtokenizer.eoa,
|
227 |
+
pad_token_id=mmtokenizer.eoa,
|
228 |
+
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
|
229 |
+
guidance_scale=guidance_scale,
|
230 |
)
|
231 |
+
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
232 |
+
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
233 |
+
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
234 |
+
if i > 1:
|
235 |
+
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
236 |
+
else:
|
237 |
+
raw_output = output_seq
|
238 |
+
print(len(raw_output))
|
239 |
+
|
240 |
+
ids = raw_output[0].cpu().numpy()
|
241 |
+
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
242 |
+
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
243 |
+
if len(soa_idx)!=len(eoa_idx):
|
244 |
+
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
245 |
+
|
246 |
+
vocals = []
|
247 |
+
instrumentals = []
|
248 |
+
range_begin = 1 if use_audio_prompt else 0
|
249 |
+
for i in range(range_begin, len(soa_idx)):
|
250 |
+
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
|
251 |
+
if codec_ids[0] == 32016:
|
252 |
+
codec_ids = codec_ids[1:]
|
253 |
+
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
254 |
+
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0])
|
255 |
+
vocals.append(vocals_ids)
|
256 |
+
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1])
|
257 |
+
instrumentals.append(instrumentals_ids)
|
258 |
+
vocals = np.concatenate(vocals, axis=1)
|
259 |
+
instrumentals = np.concatenate(instrumentals, axis=1)
|
260 |
+
|
261 |
+
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy')
|
262 |
+
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy')
|
263 |
+
|
264 |
+
np.save(vocal_save_path, vocals)
|
265 |
+
np.save(inst_save_path, instrumentals)
|
266 |
+
stage1_output_set.append(vocal_save_path)
|
267 |
+
stage1_output_set.append(inst_save_path)
|
268 |
+
|
269 |
+
|
270 |
+
print("Converting to Audio...")
|
271 |
+
recons_output_dir = os.path.join(output_dir, "recons")
|
272 |
+
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
273 |
+
os.makedirs(recons_mix_dir, exist_ok=True)
|
274 |
+
tracks = []
|
275 |
+
|
276 |
+
for npy in stage1_output_set:
|
277 |
+
codec_result = np.load(npy)
|
278 |
+
decodec_rlt=[]
|
279 |
+
with torch.no_grad():
|
280 |
+
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
|
281 |
+
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
282 |
+
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
283 |
+
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
284 |
+
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
285 |
+
tracks.append(save_path)
|
286 |
+
save_audio(decodec_rlt, save_path, 16000)
|
287 |
+
# mix tracks
|
288 |
+
for inst_path in tracks:
|
289 |
+
try:
|
290 |
+
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
|
291 |
+
and 'instrumental' in inst_path:
|
292 |
+
# find pair
|
293 |
+
vocal_path = inst_path.replace('instrumental', 'vocal')
|
294 |
+
if not os.path.exists(vocal_path):
|
295 |
+
continue
|
296 |
+
# mix
|
297 |
+
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
|
298 |
+
vocal_stem, sr = sf.read(inst_path)
|
299 |
+
instrumental_stem, _ = sf.read(vocal_path)
|
300 |
+
mix_stem = (vocal_stem + instrumental_stem) / 1
|
301 |
+
sf.write(recons_mix, mix_stem, sr)
|
302 |
+
except Exception as e:
|
303 |
+
print(e)
|
304 |
+
return recons_mix
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
+
# Gradio
|
307 |
with gr.Blocks() as demo:
|
308 |
with gr.Column():
|
309 |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
|
|
|
311 |
<div style="display:flex;column-gap:4px;">
|
312 |
<a href="https://github.com/multimodal-art-projection/YuE">
|
313 |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
|
314 |
+
</a>
|
315 |
<a href="https://map-yue.github.io">
|
316 |
<img src='https://img.shields.io/badge/Project-Page-green'>
|
317 |
</a>
|
|
|
324 |
with gr.Column():
|
325 |
genre_txt = gr.Textbox(label="Genre")
|
326 |
lyrics_txt = gr.Textbox(label="Lyrics")
|
327 |
+
|
328 |
with gr.Column():
|
329 |
+
if is_shared_ui:
|
330 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
331 |
max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second long music", minimum=100, maximum="3000", step=100, value=500, interactive=True)
|
332 |
else:
|
|
|
336 |
music_out = gr.Audio(label="Audio Result")
|
337 |
|
338 |
gr.Examples(
|
339 |
+
examples = [
|
340 |
[
|
341 |
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
342 |
"""[verse]
|
|
|
371 |
Living out my dreams with this mic and a deal
|
372 |
"""
|
373 |
]
|
374 |
+
],
|
375 |
+
inputs = [genre_txt, lyrics_txt],
|
376 |
+
outputs = [music_out],
|
377 |
+
cache_examples = False,
|
378 |
+
# cache_mode="lazy",
|
379 |
+
fn=generate_music
|
380 |
)
|
381 |
+
|
382 |
submit_btn.click(
|
383 |
+
fn = generate_music,
|
384 |
+
inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
385 |
+
outputs = [music_out]
|
386 |
)
|
387 |
demo.queue().launch(show_api=False, show_error=True)
|