Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -56,25 +56,36 @@ from omegaconf import OmegaConf
|
|
56 |
import torchaudio
|
57 |
from torchaudio.transforms import Resample
|
58 |
import soundfile as sf
|
|
|
59 |
from tqdm import tqdm
|
60 |
from einops import rearrange
|
61 |
from codecmanipulator import CodecManipulator
|
62 |
from mmtokenizer import _MMSentencePieceTokenizer
|
63 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
|
|
|
|
|
|
|
|
64 |
from models.soundstream_hubert_new import SoundStream
|
65 |
from vocoder import build_codec_model, process_audio
|
66 |
from post_process_audio import replace_low_freq_with_energy_matched
|
67 |
|
68 |
-
# Initialize device
|
69 |
device = "cuda:0"
|
70 |
|
71 |
-
# Load models once and reuse
|
72 |
-
print("Loading models...")
|
73 |
model = AutoModelForCausalLM.from_pretrained(
|
74 |
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
75 |
torch_dtype=torch.float16,
|
76 |
-
attn_implementation="flash_attention_2",
|
77 |
-
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
|
80 |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
@@ -82,142 +93,308 @@ config_path = './xcodec_mini_infer/decoders/config.yaml'
|
|
82 |
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
|
83 |
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
|
84 |
|
85 |
-
|
|
|
|
|
86 |
model_config = OmegaConf.load(basic_model_config)
|
|
|
87 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
88 |
-
|
|
|
|
|
89 |
codec_model.eval()
|
90 |
|
91 |
# Preload and compile vocoders
|
92 |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
93 |
-
vocal_decoder.to(device)
|
94 |
-
inst_decoder.to(device)
|
95 |
-
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
if use_audio_prompt and not audio_prompt_path:
|
102 |
-
raise FileNotFoundError("Please
|
103 |
-
|
104 |
-
max_new_tokens
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
def __call__(self, input_ids, scores):
|
127 |
-
scores[:, self.blocked_token_ids] = -float("inf")
|
128 |
-
return scores
|
129 |
-
|
130 |
-
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
131 |
-
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
132 |
-
guidance_scale = 1.5 if i <= 1 else 1.2
|
133 |
-
|
134 |
-
if i == 0:
|
135 |
-
continue
|
136 |
-
|
137 |
-
if i == 1 and use_audio_prompt:
|
138 |
-
audio_prompt = load_audio_mono(audio_prompt_path)
|
139 |
-
audio_prompt = audio_prompt.unsqueeze(0).to(device)
|
140 |
-
raw_codes = codec_model.encode(audio_prompt, target_bw=0.5).transpose(0, 1).cpu().numpy().astype(np.int16)
|
141 |
-
audio_prompt_codec = codectool.npy2ids(raw_codes[0])[int(prompt_start_time * 50): int(prompt_end_time * 50)]
|
142 |
-
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
|
143 |
-
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
|
144 |
-
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
145 |
-
else:
|
146 |
-
head_id = mmtokenizer.tokenize(prompt_texts[0])
|
147 |
-
|
148 |
-
prompt_ids = head_id + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
149 |
-
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
150 |
-
|
151 |
-
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
|
152 |
-
|
153 |
-
max_context = 16384 - max_new_tokens - 1
|
154 |
-
if input_ids.shape[-1] > max_context:
|
155 |
-
input_ids = input_ids[:, -(max_context):]
|
156 |
-
|
157 |
-
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
|
158 |
-
output_seq = model.generate(
|
159 |
-
input_ids=input_ids,
|
160 |
-
max_new_tokens=max_new_tokens,
|
161 |
-
min_new_tokens=100,
|
162 |
-
do_sample=True,
|
163 |
-
top_p=top_p,
|
164 |
-
temperature=temperature,
|
165 |
-
repetition_penalty=repetition_penalty,
|
166 |
-
eos_token_id=mmtokenizer.eoa,
|
167 |
-
pad_token_id=mmtokenizer.eoa,
|
168 |
-
logits_processor=LogitsProcessorList([
|
169 |
-
BlockTokenRangeProcessor(0, 32002),
|
170 |
-
BlockTokenRangeProcessor(32016, 32016)
|
171 |
-
]),
|
172 |
-
guidance_scale=guidance_scale,
|
173 |
-
use_cache=True,
|
174 |
-
top_k=50,
|
175 |
-
num_beams=1
|
176 |
-
)
|
177 |
-
|
178 |
-
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
179 |
-
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(device)
|
180 |
-
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
181 |
-
|
182 |
-
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) if i > 1 else output_seq
|
183 |
-
|
184 |
-
# Process and save outputs
|
185 |
-
ids = raw_output[0].cpu().numpy()
|
186 |
-
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
187 |
-
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
188 |
-
|
189 |
-
vocals, instrumentals = [], []
|
190 |
-
for i in range(len(soa_idx)):
|
191 |
-
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
|
192 |
-
if codec_ids[0] == 32016:
|
193 |
-
codec_ids = codec_ids[1:]
|
194 |
-
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
195 |
-
vocals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0]))
|
196 |
-
instrumentals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1]))
|
197 |
-
|
198 |
-
vocals = np.concatenate(vocals, axis=1)
|
199 |
-
instrumentals = np.concatenate(instrumentals, axis=1)
|
200 |
-
|
201 |
-
# Decode and mix audio
|
202 |
-
decoded_vocals = codec_model.decode(torch.as_tensor(vocals.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)).cpu().squeeze(0)
|
203 |
-
decoded_instrumentals = codec_model.decode(torch.as_tensor(instrumentals.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)).cpu().squeeze(0)
|
204 |
-
|
205 |
-
mixed_audio = (decoded_vocals + decoded_instrumentals) / 2
|
206 |
-
mixed_audio_np = mixed_audio.detach().numpy() # Convert to NumPy array
|
207 |
-
mixed_audio_int16 = (mixed_audio_np * 32767).astype(np.int16) # Convert to int16
|
208 |
-
|
209 |
-
# Return the sample rate and the converted audio data
|
210 |
-
return (16000, mixed_audio_int16)
|
211 |
|
212 |
@spaces.GPU(duration=120)
|
213 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=10):
|
|
|
214 |
try:
|
215 |
-
|
|
|
|
|
216 |
except Exception as e:
|
217 |
-
gr.Warning("An Error
|
218 |
return None
|
|
|
|
|
219 |
|
220 |
-
|
|
|
221 |
with gr.Blocks() as demo:
|
222 |
with gr.Column():
|
223 |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
|
@@ -316,5 +493,4 @@ Living out my dreams with this mic and a deal
|
|
316 |
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
317 |
outputs=[music_out]
|
318 |
)
|
319 |
-
|
320 |
demo.queue().launch(show_error=True)
|
|
|
56 |
import torchaudio
|
57 |
from torchaudio.transforms import Resample
|
58 |
import soundfile as sf
|
59 |
+
|
60 |
from tqdm import tqdm
|
61 |
from einops import rearrange
|
62 |
from codecmanipulator import CodecManipulator
|
63 |
from mmtokenizer import _MMSentencePieceTokenizer
|
64 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
65 |
+
import glob
|
66 |
+
import time
|
67 |
+
import copy
|
68 |
+
from collections import Counter
|
69 |
from models.soundstream_hubert_new import SoundStream
|
70 |
from vocoder import build_codec_model, process_audio
|
71 |
from post_process_audio import replace_low_freq_with_energy_matched
|
72 |
|
|
|
73 |
device = "cuda:0"
|
74 |
|
|
|
|
|
75 |
model = AutoModelForCausalLM.from_pretrained(
|
76 |
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
77 |
torch_dtype=torch.float16,
|
78 |
+
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
|
79 |
+
).to(device)
|
80 |
+
# assistant_model = AutoModelForCausalLM.from_pretrained(
|
81 |
+
# "m-a-p/YuE-s2-1B-general",
|
82 |
+
# torch_dtype=torch.float16,
|
83 |
+
# attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
|
84 |
+
# ).to(device)
|
85 |
+
# assistant_model = torch.compile(assistant_model)
|
86 |
+
# model = torch.compile(model)
|
87 |
+
# assistant_model.eval()
|
88 |
+
model.eval()
|
89 |
|
90 |
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
|
91 |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
|
|
93 |
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
|
94 |
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
|
95 |
|
96 |
+
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
97 |
+
|
98 |
+
codectool = CodecManipulator("xcodec", 0, 1)
|
99 |
model_config = OmegaConf.load(basic_model_config)
|
100 |
+
# Load codec model
|
101 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
102 |
+
parameter_dict = torch.load(resume_path, map_location='cpu')
|
103 |
+
codec_model.load_state_dict(parameter_dict['codec_model'])
|
104 |
+
# codec_model = torch.compile(codec_model)
|
105 |
codec_model.eval()
|
106 |
|
107 |
# Preload and compile vocoders
|
108 |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
109 |
+
vocal_decoder.to(device)
|
110 |
+
inst_decoder.to(device)
|
111 |
+
# vocal_decoder = torch.compile(vocal_decoder)
|
112 |
+
# inst_decoder = torch.compile(inst_decoder)
|
113 |
+
vocal_decoder.eval()
|
114 |
+
inst_decoder.eval()
|
115 |
+
|
116 |
+
|
117 |
+
def generate_music(
|
118 |
+
max_new_tokens=5,
|
119 |
+
run_n_segments=2,
|
120 |
+
genre_txt=None,
|
121 |
+
lyrics_txt=None,
|
122 |
+
use_audio_prompt=False,
|
123 |
+
audio_prompt_path="",
|
124 |
+
prompt_start_time=0.0,
|
125 |
+
prompt_end_time=30.0,
|
126 |
+
cuda_idx=0,
|
127 |
+
rescale=False,
|
128 |
+
):
|
129 |
if use_audio_prompt and not audio_prompt_path:
|
130 |
+
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
131 |
+
cuda_idx = cuda_idx
|
132 |
+
max_new_tokens = max_new_tokens * 100
|
133 |
+
|
134 |
+
with tempfile.TemporaryDirectory() as output_dir:
|
135 |
+
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
136 |
+
os.makedirs(stage1_output_dir, exist_ok=True)
|
137 |
+
|
138 |
+
class BlockTokenRangeProcessor(LogitsProcessor):
|
139 |
+
def __init__(self, start_id, end_id):
|
140 |
+
self.blocked_token_ids = list(range(start_id, end_id))
|
141 |
+
|
142 |
+
def __call__(self, input_ids, scores):
|
143 |
+
scores[:, self.blocked_token_ids] = -float("inf")
|
144 |
+
return scores
|
145 |
+
|
146 |
+
def load_audio_mono(filepath, sampling_rate=16000):
|
147 |
+
audio, sr = torchaudio.load(filepath)
|
148 |
+
# Convert to mono
|
149 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
150 |
+
# Resample if needed
|
151 |
+
if sr != sampling_rate:
|
152 |
+
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
153 |
+
audio = resampler(audio)
|
154 |
+
return audio
|
155 |
+
|
156 |
+
def split_lyrics(lyrics: str):
|
157 |
+
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
158 |
+
segments = re.findall(pattern, lyrics, re.DOTALL)
|
159 |
+
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
160 |
+
return structured_lyrics
|
161 |
+
|
162 |
+
# Call the function and print the result
|
163 |
+
stage1_output_set = []
|
164 |
+
|
165 |
+
genres = genre_txt.strip()
|
166 |
+
lyrics = split_lyrics(lyrics_txt + "\n")
|
167 |
+
# intruction
|
168 |
+
full_lyrics = "\n".join(lyrics)
|
169 |
+
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
170 |
+
prompt_texts += lyrics
|
171 |
+
|
172 |
+
random_id = uuid.uuid4()
|
173 |
+
output_seq = None
|
174 |
+
# Here is suggested decoding config
|
175 |
+
top_p = 0.93
|
176 |
+
temperature = 1.0
|
177 |
+
repetition_penalty = 1.2
|
178 |
+
# special tokens
|
179 |
+
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
180 |
+
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
181 |
+
|
182 |
+
raw_output = None
|
183 |
+
|
184 |
+
# Format text prompt
|
185 |
+
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
186 |
+
|
187 |
+
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
|
188 |
+
|
189 |
+
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
190 |
+
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
191 |
+
guidance_scale = 1.5 if i <= 1 else 1.2
|
192 |
+
if i == 0:
|
193 |
+
continue
|
194 |
+
if i == 1:
|
195 |
+
if use_audio_prompt:
|
196 |
+
audio_prompt = load_audio_mono(audio_prompt_path)
|
197 |
+
audio_prompt.unsqueeze_(0)
|
198 |
+
with torch.no_grad():
|
199 |
+
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
|
200 |
+
raw_codes = raw_codes.transpose(0, 1)
|
201 |
+
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
|
202 |
+
# Format audio prompt
|
203 |
+
code_ids = codectool.npy2ids(raw_codes[0])
|
204 |
+
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec
|
205 |
+
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [
|
206 |
+
mmtokenizer.eoa]
|
207 |
+
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize(
|
208 |
+
"[end_of_reference]")
|
209 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
210 |
+
else:
|
211 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0])
|
212 |
+
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
213 |
+
else:
|
214 |
+
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
215 |
+
|
216 |
+
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
217 |
+
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
|
218 |
+
# Use window slicing in case output sequence exceeds the context of model
|
219 |
+
max_context = 16384 - max_new_tokens - 1
|
220 |
+
if input_ids.shape[-1] > max_context:
|
221 |
+
print(
|
222 |
+
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
223 |
+
input_ids = input_ids[:, -(max_context):]
|
224 |
+
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
|
225 |
+
output_seq = model.generate(
|
226 |
+
input_ids=input_ids,
|
227 |
+
max_new_tokens=max_new_tokens,
|
228 |
+
min_new_tokens=100,
|
229 |
+
do_sample=True,
|
230 |
+
top_p=top_p,
|
231 |
+
temperature=temperature,
|
232 |
+
repetition_penalty=repetition_penalty,
|
233 |
+
eos_token_id=mmtokenizer.eoa,
|
234 |
+
pad_token_id=mmtokenizer.eoa,
|
235 |
+
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
|
236 |
+
guidance_scale=guidance_scale,
|
237 |
+
use_cache=True,
|
238 |
+
top_k=50,
|
239 |
+
num_beams=1
|
240 |
+
)
|
241 |
+
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
242 |
+
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
243 |
+
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
244 |
+
if i > 1:
|
245 |
+
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
246 |
+
else:
|
247 |
+
raw_output = output_seq
|
248 |
+
print(len(raw_output))
|
249 |
+
|
250 |
+
# save raw output and check sanity
|
251 |
+
ids = raw_output[0].cpu().numpy()
|
252 |
+
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
253 |
+
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
254 |
+
if len(soa_idx) != len(eoa_idx):
|
255 |
+
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
256 |
+
|
257 |
+
vocals = []
|
258 |
+
instrumentals = []
|
259 |
+
range_begin = 1 if use_audio_prompt else 0
|
260 |
+
for i in range(range_begin, len(soa_idx)):
|
261 |
+
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
|
262 |
+
if codec_ids[0] == 32016:
|
263 |
+
codec_ids = codec_ids[1:]
|
264 |
+
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
265 |
+
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
|
266 |
+
vocals.append(vocals_ids)
|
267 |
+
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
|
268 |
+
instrumentals.append(instrumentals_ids)
|
269 |
+
vocals = np.concatenate(vocals, axis=1)
|
270 |
+
instrumentals = np.concatenate(instrumentals, axis=1)
|
271 |
+
|
272 |
+
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{random_id}".replace('.', '@') + '.npy')
|
273 |
+
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{random_id}".replace('.', '@') + '.npy')
|
274 |
+
np.save(vocal_save_path, vocals)
|
275 |
+
np.save(inst_save_path, instrumentals)
|
276 |
+
stage1_output_set.append(vocal_save_path)
|
277 |
+
stage1_output_set.append(inst_save_path)
|
278 |
+
|
279 |
|
280 |
+
print("Converting to Audio...")
|
281 |
+
|
282 |
+
# convert audio tokens to audio
|
283 |
+
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
284 |
+
folder_path = os.path.dirname(path)
|
285 |
+
if not os.path.exists(folder_path):
|
286 |
+
os.makedirs(folder_path)
|
287 |
+
limit = 0.99
|
288 |
+
max_val = wav.abs().max()
|
289 |
+
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
290 |
+
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
291 |
+
|
292 |
+
# reconstruct tracks
|
293 |
+
recons_output_dir = os.path.join(output_dir, "recons")
|
294 |
+
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
295 |
+
os.makedirs(recons_mix_dir, exist_ok=True)
|
296 |
+
tracks = []
|
297 |
+
for npy in stage1_output_set:
|
298 |
+
codec_result = np.load(npy)
|
299 |
+
decodec_rlt = []
|
300 |
+
with torch.no_grad():
|
301 |
+
decoded_waveform = codec_model.decode(
|
302 |
+
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
|
303 |
+
device))
|
304 |
+
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
305 |
+
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
306 |
+
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
307 |
+
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
308 |
+
tracks.append(save_path)
|
309 |
+
save_audio(decodec_rlt, save_path, 16000)
|
310 |
+
# mix tracks
|
311 |
+
for inst_path in tracks:
|
312 |
+
try:
|
313 |
+
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
|
314 |
+
and 'instrumental' in inst_path:
|
315 |
+
# find pair
|
316 |
+
vocal_path = inst_path.replace('instrumental', 'vocal')
|
317 |
+
if not os.path.exists(vocal_path):
|
318 |
+
continue
|
319 |
+
# mix
|
320 |
+
recons_mix = os.path.join(recons_mix_dir,
|
321 |
+
os.path.basename(inst_path).replace('instrumental', 'mixed'))
|
322 |
+
vocal_stem, sr = sf.read(inst_path)
|
323 |
+
instrumental_stem, _ = sf.read(vocal_path)
|
324 |
+
mix_stem = (vocal_stem + instrumental_stem) / 1
|
325 |
+
sf.write(recons_mix, mix_stem, sr)
|
326 |
+
except Exception as e:
|
327 |
+
print(e)
|
328 |
+
|
329 |
+
# vocoder to upsample audios
|
330 |
+
vocoder_output_dir = os.path.join(output_dir, 'vocoder')
|
331 |
+
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
|
332 |
+
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
|
333 |
+
os.makedirs(vocoder_mix_dir, exist_ok=True)
|
334 |
+
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
335 |
+
instrumental_output = None
|
336 |
+
vocal_output = None
|
337 |
+
for npy in stage1_output_set:
|
338 |
+
if 'instrumental' in npy:
|
339 |
+
# Process instrumental
|
340 |
+
instrumental_output = process_audio(
|
341 |
+
npy,
|
342 |
+
os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
|
343 |
+
rescale,
|
344 |
+
argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace
|
345 |
+
inst_decoder,
|
346 |
+
codec_model
|
347 |
+
)
|
348 |
+
else:
|
349 |
+
# Process vocal
|
350 |
+
vocal_output = process_audio(
|
351 |
+
npy,
|
352 |
+
os.path.join(vocoder_stems_dir, 'vocal.mp3'),
|
353 |
+
rescale,
|
354 |
+
argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace
|
355 |
+
vocal_decoder,
|
356 |
+
codec_model
|
357 |
+
)
|
358 |
+
# mix tracks
|
359 |
+
try:
|
360 |
+
mix_output = instrumental_output + vocal_output
|
361 |
+
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
|
362 |
+
save_audio(mix_output, vocoder_mix, 44100, rescale)
|
363 |
+
print(f"Created mix: {vocoder_mix}")
|
364 |
+
except RuntimeError as e:
|
365 |
+
print(e)
|
366 |
+
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
|
367 |
+
|
368 |
+
# Post process
|
369 |
+
final_output_path = os.path.join(output_dir, os.path.basename(recons_mix))
|
370 |
+
replace_low_freq_with_energy_matched(
|
371 |
+
a_file=recons_mix, # 16kHz
|
372 |
+
b_file=vocoder_mix, # 48kHz
|
373 |
+
c_file=final_output_path,
|
374 |
+
cutoff_freq=5500.0
|
375 |
+
)
|
376 |
+
print("All process Done")
|
377 |
+
|
378 |
+
# Load the final audio file and return the numpy array
|
379 |
+
final_audio, sr = torchaudio.load(final_output_path)
|
380 |
+
return (sr, final_audio.squeeze().numpy())
|
381 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
@spaces.GPU(duration=120)
|
384 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=10):
|
385 |
+
# Execute the command
|
386 |
try:
|
387 |
+
audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
388 |
+
cuda_idx=0, max_new_tokens=max_new_tokens)
|
389 |
+
return audio_data
|
390 |
except Exception as e:
|
391 |
+
gr.Warning("An Error Occured: " + str(e))
|
392 |
return None
|
393 |
+
finally:
|
394 |
+
print("Temporary files deleted.")
|
395 |
|
396 |
+
|
397 |
+
# Gradio
|
398 |
with gr.Blocks() as demo:
|
399 |
with gr.Column():
|
400 |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
|
|
|
493 |
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
494 |
outputs=[music_out]
|
495 |
)
|
|
|
496 |
demo.queue().launch(show_error=True)
|