Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
import os
|
4 |
-
import shutil
|
5 |
-
import tempfile
|
6 |
import spaces
|
7 |
-
import torch
|
8 |
import sys
|
|
|
|
|
9 |
import uuid
|
10 |
import re
|
11 |
-
import numpy as np
|
12 |
-
import json
|
13 |
import time
|
14 |
import copy
|
15 |
from collections import Counter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
# Install flash-attn
|
18 |
print("Installing flash-attn...")
|
19 |
subprocess.run(
|
20 |
"pip install flash-attn --no-build-isolation",
|
@@ -22,9 +28,9 @@ subprocess.run(
|
|
22 |
shell=True
|
23 |
)
|
24 |
|
25 |
-
# Download
|
26 |
from huggingface_hub import snapshot_download
|
27 |
-
folder_path =
|
28 |
if not os.path.exists(folder_path):
|
29 |
os.mkdir(folder_path)
|
30 |
print(f"Folder created at: {folder_path}")
|
@@ -45,156 +51,287 @@ except FileNotFoundError:
|
|
45 |
print(f"Directory not found: {inference_dir}")
|
46 |
exit(1)
|
47 |
|
48 |
-
# Append
|
49 |
base_path = os.path.dirname(os.path.abspath(__file__))
|
50 |
-
sys.path.append(os.path.join(base_path,
|
51 |
-
sys.path.append(os.path.join(base_path,
|
52 |
|
53 |
-
#
|
54 |
from omegaconf import OmegaConf
|
55 |
-
import torchaudio
|
56 |
-
from torchaudio.transforms import Resample
|
57 |
-
import soundfile as sf
|
58 |
-
from tqdm import tqdm
|
59 |
-
from einops import rearrange
|
60 |
from codecmanipulator import CodecManipulator
|
61 |
from mmtokenizer import _MMSentencePieceTokenizer
|
62 |
-
from transformers import
|
63 |
-
import glob
|
64 |
from models.soundstream_hubert_new import SoundStream
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
model = AutoModelForCausalLM.from_pretrained(
|
71 |
-
|
72 |
torch_dtype=torch.float16,
|
73 |
attn_implementation="flash_attention_2",
|
74 |
).to(device)
|
75 |
model.eval()
|
76 |
try:
|
77 |
-
# torch.compile is available in PyTorch 2.0+
|
78 |
model = torch.compile(model)
|
79 |
except Exception as e:
|
80 |
-
print("torch.compile
|
81 |
-
|
82 |
-
# File paths for codec model checkpoint
|
83 |
-
basic_model_config = os.path.join(folder_path, 'final_ckpt/config.yaml')
|
84 |
-
resume_path = os.path.join(folder_path, 'final_ckpt/ckpt_00360000.pth')
|
85 |
|
86 |
-
# Initialize tokenizer and codec manipulator
|
87 |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
|
|
|
|
88 |
codectool = CodecManipulator("xcodec", 0, 1)
|
|
|
89 |
|
90 |
-
# Load codec model
|
91 |
-
model_config = OmegaConf.load(
|
92 |
-
# Dynamically create the model from its name in the config.
|
93 |
codec_class = eval(model_config.generator.name)
|
94 |
codec_model = codec_class(**model_config.generator.config).to(device)
|
95 |
-
parameter_dict = torch.load(
|
96 |
-
codec_model.load_state_dict(parameter_dict[
|
97 |
codec_model.eval()
|
98 |
try:
|
99 |
codec_model = torch.compile(codec_model)
|
100 |
except Exception as e:
|
101 |
-
print("torch.compile
|
102 |
|
103 |
-
#
|
104 |
LYRICS_PATTERN = re.compile(r"\[(\w+)\](.*?)\n(?=\[|\Z)", re.DOTALL)
|
105 |
|
106 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
@spaces.GPU(duration=120)
|
108 |
def generate_music(
|
109 |
max_new_tokens=5,
|
110 |
run_n_segments=2,
|
111 |
-
genre_txt=
|
112 |
-
lyrics_txt=
|
113 |
use_audio_prompt=False,
|
114 |
audio_prompt_path="",
|
115 |
prompt_start_time=0.0,
|
116 |
prompt_end_time=30.0,
|
117 |
-
cuda_idx=0,
|
118 |
rescale=False,
|
119 |
):
|
120 |
-
|
121 |
-
|
122 |
-
max_new_tokens = max_new_tokens * 50 # scaling factor
|
123 |
|
124 |
-
|
125 |
-
|
|
|
|
|
126 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
|
|
127 |
|
128 |
-
#
|
129 |
-
|
130 |
-
def __init__(self, start_id, end_id):
|
131 |
-
# Pre-create a tensor for indices if possible
|
132 |
-
self.blocked_token_ids = list(range(start_id, end_id))
|
133 |
-
def __call__(self, input_ids, scores):
|
134 |
-
scores[:, self.blocked_token_ids] = -float("inf")
|
135 |
-
return scores
|
136 |
-
|
137 |
-
# -- Audio processing utility --
|
138 |
-
def load_audio_mono(filepath, sampling_rate=16000):
|
139 |
-
audio, sr = torchaudio.load(filepath)
|
140 |
-
audio = audio.mean(dim=0, keepdim=True) # convert to mono
|
141 |
-
if sr != sampling_rate:
|
142 |
-
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
143 |
-
audio = resampler(audio)
|
144 |
-
return audio
|
145 |
-
|
146 |
-
# -- Lyrics splitting using precompiled regex --
|
147 |
-
def split_lyrics(lyrics: str):
|
148 |
-
segments = LYRICS_PATTERN.findall(lyrics)
|
149 |
-
# Return segments with formatting (strip extra whitespace)
|
150 |
-
return [f"[{tag}]\n{text.strip()}\n\n" for tag, text in segments]
|
151 |
-
|
152 |
-
# Prepare prompt texts
|
153 |
-
genres = genre_txt.strip() if genre_txt else ""
|
154 |
lyrics_segments = split_lyrics(lyrics_txt + "\n")
|
155 |
full_lyrics = "\n".join(lyrics_segments)
|
156 |
-
# The first prompt is a global instruction; the rest are segments.
|
157 |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
158 |
prompt_texts += lyrics_segments
|
159 |
|
160 |
random_id = uuid.uuid4()
|
161 |
raw_output = None
|
162 |
|
163 |
-
# Decoding config
|
164 |
top_p = 0.93
|
165 |
temperature = 1.0
|
166 |
repetition_penalty = 1.2
|
167 |
|
168 |
-
# Pre-tokenize
|
169 |
-
start_of_segment = mmtokenizer.tokenize(
|
170 |
-
end_of_segment = mmtokenizer.tokenize(
|
171 |
-
soa_token = mmtokenizer.soa
|
172 |
-
eoa_token = mmtokenizer.eoa
|
173 |
|
174 |
-
# Pre-tokenize the global prompt (first element)
|
175 |
global_prompt_ids = mmtokenizer.tokenize(prompt_texts[0])
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments], desc="Generating segments")):
|
180 |
-
# Remove any spurious tokens in the text
|
181 |
-
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
182 |
guidance_scale = 1.5 if i <= 1 else 1.2
|
183 |
if i == 0:
|
184 |
-
# Skip generation on the instruction segment.
|
185 |
continue
|
186 |
-
|
187 |
-
# Build prompt IDs differently depending on whether audio prompt is enabled.
|
188 |
if i == 1:
|
189 |
if use_audio_prompt:
|
190 |
audio_prompt = load_audio_mono(audio_prompt_path)
|
191 |
audio_prompt = audio_prompt.unsqueeze(0)
|
192 |
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
|
193 |
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
|
194 |
-
# Process raw codes (transpose and convert to numpy)
|
195 |
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
|
196 |
code_ids = codectool.npy2ids(raw_codes[0])
|
197 |
-
# Slice using prompt start/end time (assuming 50 tokens per second)
|
198 |
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
|
199 |
audio_prompt_codec_ids = [soa_token] + codectool.sep_ids + audio_prompt_codec + [eoa_token]
|
200 |
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
|
@@ -207,20 +344,17 @@ def generate_music(
|
|
207 |
|
208 |
prompt_ids_tensor = torch.as_tensor(prompt_ids, device=device).unsqueeze(0)
|
209 |
if raw_output is not None:
|
210 |
-
# Concatenate previous outputs with the new prompt
|
211 |
input_ids = torch.cat([raw_output, prompt_ids_tensor], dim=1)
|
212 |
else:
|
213 |
input_ids = prompt_ids_tensor
|
214 |
|
215 |
-
|
216 |
-
max_context = 16384 - max_new_tokens - 1
|
217 |
if input_ids.shape[-1] > max_context:
|
218 |
input_ids = input_ids[:, -max_context:]
|
219 |
-
|
220 |
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
|
221 |
output_seq = model.generate(
|
222 |
input_ids=input_ids,
|
223 |
-
max_new_tokens=
|
224 |
min_new_tokens=100,
|
225 |
do_sample=True,
|
226 |
top_p=top_p,
|
@@ -233,147 +367,178 @@ def generate_music(
|
|
233 |
BlockTokenRangeProcessor(32016, 32016)
|
234 |
]),
|
235 |
guidance_scale=guidance_scale,
|
236 |
-
use_cache=True
|
237 |
)
|
238 |
-
# Ensure the output ends with an end-of-audio token
|
239 |
if output_seq[0, -1].item() != eoa_token:
|
240 |
tensor_eoa = torch.as_tensor([[eoa_token]], device=device)
|
241 |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
242 |
-
# For subsequent segments, append only the newly generated tokens.
|
243 |
if raw_output is not None:
|
244 |
new_tokens = output_seq[:, input_ids.shape[-1]:]
|
245 |
raw_output = torch.cat([raw_output, prompt_ids_tensor, new_tokens], dim=1)
|
246 |
else:
|
247 |
raw_output = output_seq
|
248 |
|
249 |
-
# Save
|
250 |
ids = raw_output[0].cpu().numpy()
|
251 |
soa_idx = np.where(ids == soa_token)[0]
|
252 |
eoa_idx = np.where(ids == eoa_token)[0]
|
253 |
if len(soa_idx) != len(eoa_idx):
|
254 |
-
raise ValueError(f
|
255 |
-
|
256 |
vocals_list = []
|
257 |
instrumentals_list = []
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
codec_ids = ids[soa_idx[i] + 1: eoa_idx[i]]
|
262 |
if codec_ids[0] == 32016:
|
263 |
codec_ids = codec_ids[1:]
|
264 |
-
# Force even length and reshape into 2 channels.
|
265 |
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
|
266 |
-
codec_ids = np.array(codec_ids)
|
267 |
reshaped = rearrange(codec_ids, "(n b) -> b n", b=2)
|
268 |
vocals_list.append(codectool.ids2npy(reshaped[0]))
|
269 |
instrumentals_list.append(codectool.ids2npy(reshaped[1]))
|
270 |
vocals = np.concatenate(vocals_list, axis=1)
|
271 |
instrumentals = np.concatenate(instrumentals_list, axis=1)
|
272 |
-
|
273 |
-
# Save the numpy arrays to temporary files
|
274 |
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{str(random_id).replace('.', '@')}.npy")
|
275 |
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{str(random_id).replace('.', '@')}.npy")
|
276 |
np.save(vocal_save_path, vocals)
|
277 |
np.save(inst_save_path, instrumentals)
|
278 |
stage1_output_set = [vocal_save_path, inst_save_path]
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
295 |
recons_mix_dir = os.path.join(recons_output_dir, "mix")
|
296 |
os.makedirs(recons_mix_dir, exist_ok=True)
|
297 |
tracks = []
|
298 |
-
for
|
299 |
-
codec_result = np.load(
|
300 |
with torch.inference_mode():
|
301 |
-
# Adjust shape: (1, T, C) expected by the decoder
|
302 |
input_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)
|
303 |
decoded_waveform = codec_model.decode(input_tensor)
|
304 |
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
305 |
-
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(
|
306 |
tracks.append(save_path)
|
307 |
-
save_audio(decoded_waveform, save_path,
|
308 |
-
|
309 |
-
|
|
|
|
|
310 |
for inst_path in tracks:
|
311 |
try:
|
312 |
-
if (inst_path.endswith(
|
313 |
-
vocal_path = inst_path.replace(
|
314 |
if not os.path.exists(vocal_path):
|
315 |
continue
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
except Exception as e:
|
325 |
print("Mixing error:", e)
|
326 |
return None, None, None
|
327 |
|
328 |
-
#
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
with gr.Blocks() as demo:
|
347 |
with gr.Column():
|
348 |
-
gr.Markdown("# YuE:
|
349 |
gr.HTML(
|
350 |
"""
|
351 |
-
<div style="display:flex;column-gap:4px;">
|
352 |
-
|
353 |
-
|
354 |
-
</a>
|
355 |
-
<a href="https://map-yue.github.io">
|
356 |
-
<img src='https://img.shields.io/badge/Project-Page-green'>
|
357 |
-
</a>
|
358 |
-
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
|
359 |
-
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
|
360 |
-
</a>
|
361 |
</div>
|
362 |
"""
|
363 |
)
|
364 |
with gr.Row():
|
365 |
with gr.Column():
|
366 |
-
genre_txt = gr.Textbox(label="Genre")
|
367 |
-
lyrics_txt = gr.Textbox(label="Lyrics")
|
368 |
with gr.Column():
|
369 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
370 |
-
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
|
|
|
|
|
371 |
submit_btn = gr.Button("Submit")
|
372 |
music_out = gr.Audio(label="Mixed Audio Result")
|
373 |
-
with gr.Accordion(label="Vocal and Instrumental
|
374 |
vocal_out = gr.Audio(label="Vocal Audio")
|
375 |
instrumental_out = gr.Audio(label="Instrumental Audio")
|
376 |
-
|
377 |
gr.Examples(
|
378 |
examples=[
|
379 |
[
|
@@ -421,14 +586,13 @@ Living out my dreams with this mic and a deal
|
|
421 |
outputs=[music_out, vocal_out, instrumental_out],
|
422 |
cache_examples=True,
|
423 |
cache_mode="eager",
|
424 |
-
fn=
|
425 |
)
|
426 |
-
|
427 |
submit_btn.click(
|
428 |
-
fn=
|
429 |
-
inputs=[genre_txt, lyrics_txt,
|
430 |
outputs=[music_out, vocal_out, instrumental_out]
|
431 |
)
|
432 |
-
gr.Markdown("##
|
433 |
-
|
434 |
demo.queue().launch(show_error=True)
|
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
import os
|
|
|
|
|
4 |
import spaces
|
|
|
5 |
import sys
|
6 |
+
import shutil
|
7 |
+
import tempfile
|
8 |
import uuid
|
9 |
import re
|
|
|
|
|
10 |
import time
|
11 |
import copy
|
12 |
from collections import Counter
|
13 |
+
from tqdm import tqdm
|
14 |
+
from einops import rearrange
|
15 |
+
import numpy as np
|
16 |
+
import json
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torchaudio
|
20 |
+
from torchaudio.transforms import Resample
|
21 |
+
import soundfile as sf
|
22 |
|
23 |
+
# --- Install flash-attn (if needed) ---
|
24 |
print("Installing flash-attn...")
|
25 |
subprocess.run(
|
26 |
"pip install flash-attn --no-build-isolation",
|
|
|
28 |
shell=True
|
29 |
)
|
30 |
|
31 |
+
# --- Download and set up stage1 files ---
|
32 |
from huggingface_hub import snapshot_download
|
33 |
+
folder_path = "./xcodec_mini_infer"
|
34 |
if not os.path.exists(folder_path):
|
35 |
os.mkdir(folder_path)
|
36 |
print(f"Folder created at: {folder_path}")
|
|
|
51 |
print(f"Directory not found: {inference_dir}")
|
52 |
exit(1)
|
53 |
|
54 |
+
# --- Append required module paths ---
|
55 |
base_path = os.path.dirname(os.path.abspath(__file__))
|
56 |
+
sys.path.append(os.path.join(base_path, "xcodec_mini_infer"))
|
57 |
+
sys.path.append(os.path.join(base_path, "xcodec_mini_infer", "descriptaudiocodec"))
|
58 |
|
59 |
+
# --- Additional imports (vocoder & post processing) ---
|
60 |
from omegaconf import OmegaConf
|
|
|
|
|
|
|
|
|
|
|
61 |
from codecmanipulator import CodecManipulator
|
62 |
from mmtokenizer import _MMSentencePieceTokenizer
|
63 |
+
from transformers import AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
|
|
64 |
from models.soundstream_hubert_new import SoundStream
|
65 |
|
66 |
+
# Import vocoder functions (ensure these modules exist)
|
67 |
+
from vocoder import build_codec_model, process_audio
|
68 |
+
from post_process_audio import replace_low_freq_with_energy_matched
|
69 |
+
|
70 |
+
# ----------------------- Global Configuration -----------------------
|
71 |
+
# Stage1 and Stage2 model identifiers (change if needed)
|
72 |
+
STAGE1_MODEL = "m-a-p/YuE-s1-7B-anneal-en-cot"
|
73 |
+
STAGE2_MODEL = "m-a-p/YuE-s2-1B-general"
|
74 |
+
# Vocoder model files (paths in the xcodec snapshot)
|
75 |
+
BASIC_MODEL_CONFIG = os.path.join(folder_path, "final_ckpt/config.yaml")
|
76 |
+
RESUME_PATH = os.path.join(folder_path, "final_ckpt/ckpt_00360000.pth")
|
77 |
+
VOCAL_DECODER_PATH = os.path.join(folder_path, "decoders/decoder_131000.pth")
|
78 |
+
INST_DECODER_PATH = os.path.join(folder_path, "decoders/decoder_151000.pth")
|
79 |
+
VOCODER_CONFIG_PATH = os.path.join(folder_path, "decoders/config.yaml")
|
80 |
+
|
81 |
+
# Misc settings
|
82 |
+
MAX_NEW_TOKENS = 15 # Duration slider (in seconds, scaled internally)
|
83 |
+
RUN_N_SEGMENTS = 2 # Number of segments to generate
|
84 |
+
STAGE2_BATCH_SIZE = 4 # Batch size for stage2 inference
|
85 |
+
|
86 |
+
# You may change these defaults via Gradio input (see below)
|
87 |
+
|
88 |
+
# ----------------------- Device Setup -----------------------
|
89 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
90 |
+
print(f"Using device: {device}")
|
91 |
+
|
92 |
+
# ----------------------- Load Stage1 Models and Tokenizer -----------------------
|
93 |
+
print("Loading Stage 1 model and tokenizer...")
|
94 |
model = AutoModelForCausalLM.from_pretrained(
|
95 |
+
STAGE1_MODEL,
|
96 |
torch_dtype=torch.float16,
|
97 |
attn_implementation="flash_attention_2",
|
98 |
).to(device)
|
99 |
model.eval()
|
100 |
try:
|
|
|
101 |
model = torch.compile(model)
|
102 |
except Exception as e:
|
103 |
+
print("torch.compile skipped for Stage1 model:", e)
|
|
|
|
|
|
|
|
|
104 |
|
|
|
105 |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
106 |
+
|
107 |
+
# Two separate codec manipulators: one for Stage1 and one for Stage2 (with a higher number of quantizers)
|
108 |
codectool = CodecManipulator("xcodec", 0, 1)
|
109 |
+
codectool_stage2 = CodecManipulator("xcodec", 0, 8)
|
110 |
|
111 |
+
# Load codec (xcodec) model for Stage1 & Stage2 decoding
|
112 |
+
model_config = OmegaConf.load(BASIC_MODEL_CONFIG)
|
|
|
113 |
codec_class = eval(model_config.generator.name)
|
114 |
codec_model = codec_class(**model_config.generator.config).to(device)
|
115 |
+
parameter_dict = torch.load(RESUME_PATH, map_location="cpu")
|
116 |
+
codec_model.load_state_dict(parameter_dict["codec_model"])
|
117 |
codec_model.eval()
|
118 |
try:
|
119 |
codec_model = torch.compile(codec_model)
|
120 |
except Exception as e:
|
121 |
+
print("torch.compile skipped for codec_model:", e)
|
122 |
|
123 |
+
# Precompile regex for splitting lyrics
|
124 |
LYRICS_PATTERN = re.compile(r"\[(\w+)\](.*?)\n(?=\[|\Z)", re.DOTALL)
|
125 |
|
126 |
+
# ----------------------- Utility Functions -----------------------
|
127 |
+
def load_audio_mono(filepath, sampling_rate=16000):
|
128 |
+
audio, sr = torchaudio.load(filepath)
|
129 |
+
audio = audio.mean(dim=0, keepdim=True) # convert to mono
|
130 |
+
if sr != sampling_rate:
|
131 |
+
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
132 |
+
audio = resampler(audio)
|
133 |
+
return audio
|
134 |
+
|
135 |
+
def split_lyrics(lyrics: str):
|
136 |
+
segments = LYRICS_PATTERN.findall(lyrics)
|
137 |
+
return [f"[{tag}]\n{text.strip()}\n\n" for tag, text in segments]
|
138 |
+
|
139 |
+
class BlockTokenRangeProcessor(LogitsProcessor):
|
140 |
+
def __init__(self, start_id, end_id):
|
141 |
+
self.blocked_token_ids = list(range(start_id, end_id))
|
142 |
+
def __call__(self, input_ids, scores):
|
143 |
+
scores[:, self.blocked_token_ids] = -float("inf")
|
144 |
+
return scores
|
145 |
+
|
146 |
+
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
147 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
148 |
+
limit = 0.99
|
149 |
+
max_val = wav.abs().max().item()
|
150 |
+
if rescale and max_val > 0:
|
151 |
+
wav = wav * (limit / max_val)
|
152 |
+
else:
|
153 |
+
wav = wav.clamp(-limit, limit)
|
154 |
+
torchaudio.save(path, wav, sample_rate=sample_rate, encoding="PCM_S", bits_per_sample=16)
|
155 |
+
|
156 |
+
# ----------------------- Stage2 Functions -----------------------
|
157 |
+
def stage2_generate(model_stage2, prompt, batch_size=16):
|
158 |
+
"""
|
159 |
+
Given a prompt (a numpy array of raw codec ids), upsample using the Stage2 model.
|
160 |
+
"""
|
161 |
+
# Unflatten prompt: assume prompt shape (1, T) and then reformat.
|
162 |
+
codec_ids = codectool.unflatten(prompt, n_quantizer=1)
|
163 |
+
codec_ids = codectool.offset_tok_ids(
|
164 |
+
codec_ids,
|
165 |
+
global_offset=codectool.global_offset,
|
166 |
+
codebook_size=codectool.codebook_size,
|
167 |
+
num_codebooks=codectool.num_codebooks,
|
168 |
+
).astype(np.int32)
|
169 |
+
|
170 |
+
# Build new prompt tokens for Stage2:
|
171 |
+
if batch_size > 1:
|
172 |
+
codec_list = []
|
173 |
+
for i in range(batch_size):
|
174 |
+
idx_begin = i * 300
|
175 |
+
idx_end = (i + 1) * 300
|
176 |
+
codec_list.append(codec_ids[:, idx_begin:idx_end])
|
177 |
+
codec_ids_concat = np.concatenate(codec_list, axis=0)
|
178 |
+
prompt_ids = np.concatenate(
|
179 |
+
[
|
180 |
+
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
|
181 |
+
codec_ids_concat,
|
182 |
+
np.tile([mmtokenizer.stage_2], (batch_size, 1)),
|
183 |
+
],
|
184 |
+
axis=1,
|
185 |
+
)
|
186 |
+
else:
|
187 |
+
prompt_ids = np.concatenate(
|
188 |
+
[
|
189 |
+
np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
|
190 |
+
codec_ids.flatten(),
|
191 |
+
np.array([mmtokenizer.stage_2]),
|
192 |
+
]
|
193 |
+
).astype(np.int32)
|
194 |
+
prompt_ids = prompt_ids[np.newaxis, ...]
|
195 |
+
|
196 |
+
codec_ids_tensor = torch.as_tensor(codec_ids).to(device)
|
197 |
+
prompt_ids_tensor = torch.as_tensor(prompt_ids).to(device)
|
198 |
+
len_prompt = prompt_ids_tensor.shape[-1]
|
199 |
+
|
200 |
+
block_list = LogitsProcessorList([
|
201 |
+
BlockTokenRangeProcessor(0, 46358),
|
202 |
+
BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)
|
203 |
+
])
|
204 |
+
|
205 |
+
# Teacher forcing generate loop: generate tokens in fixed 7-token steps per frame.
|
206 |
+
for frames_idx in range(codec_ids_tensor.shape[1]):
|
207 |
+
cb0 = codec_ids_tensor[:, frames_idx:frames_idx+1]
|
208 |
+
prompt_ids_tensor = torch.cat([prompt_ids_tensor, cb0], dim=1)
|
209 |
+
with torch.no_grad():
|
210 |
+
stage2_output = model_stage2.generate(
|
211 |
+
input_ids=prompt_ids_tensor,
|
212 |
+
min_new_tokens=7,
|
213 |
+
max_new_tokens=7,
|
214 |
+
eos_token_id=mmtokenizer.eoa,
|
215 |
+
pad_token_id=mmtokenizer.eoa,
|
216 |
+
logits_processor=block_list,
|
217 |
+
)
|
218 |
+
# Ensure exactly 7 new tokens were added.
|
219 |
+
assert stage2_output.shape[1] - prompt_ids_tensor.shape[1] == 7, (
|
220 |
+
f"output new tokens={stage2_output.shape[1]-prompt_ids_tensor.shape[1]}"
|
221 |
+
)
|
222 |
+
prompt_ids_tensor = stage2_output
|
223 |
+
|
224 |
+
# Return new tokens (excluding prompt)
|
225 |
+
if batch_size > 1:
|
226 |
+
output = prompt_ids_tensor.cpu().numpy()[:, len_prompt:]
|
227 |
+
# If desired, reshape/split per batch element
|
228 |
+
output_list = [output[i] for i in range(batch_size)]
|
229 |
+
output = np.concatenate(output_list, axis=0)
|
230 |
+
else:
|
231 |
+
output = prompt_ids_tensor[0].cpu().numpy()[len_prompt:]
|
232 |
+
return output
|
233 |
+
|
234 |
+
def stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=4):
|
235 |
+
stage2_result = []
|
236 |
+
for path in tqdm(stage1_output_set, desc="Stage2 Inference"):
|
237 |
+
output_filename = os.path.join(stage2_output_dir, os.path.basename(path))
|
238 |
+
if os.path.exists(output_filename):
|
239 |
+
print(f"{output_filename} already processed.")
|
240 |
+
stage2_result.append(output_filename)
|
241 |
+
continue
|
242 |
+
prompt = np.load(path).astype(np.int32)
|
243 |
+
# Only process multiples of 6 seconds; here 50 tokens per second.
|
244 |
+
output_duration = (prompt.shape[-1] // 50) // 6 * 6
|
245 |
+
num_batch = output_duration // 6
|
246 |
+
if num_batch <= batch_size:
|
247 |
+
output = stage2_generate(model_stage2, prompt[:, :output_duration*50], batch_size=num_batch)
|
248 |
+
else:
|
249 |
+
segments = []
|
250 |
+
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
|
251 |
+
for seg in range(num_segments):
|
252 |
+
start_idx = seg * batch_size * 300
|
253 |
+
end_idx = min((seg + 1) * batch_size * 300, output_duration * 50)
|
254 |
+
current_batch = batch_size if (seg != num_segments - 1 or num_batch % batch_size == 0) else num_batch % batch_size
|
255 |
+
segment = stage2_generate(model_stage2, prompt[:, start_idx:end_idx], batch_size=current_batch)
|
256 |
+
segments.append(segment)
|
257 |
+
output = np.concatenate(segments, axis=0)
|
258 |
+
# Process any remaining tokens if prompt length not fully used.
|
259 |
+
if output_duration * 50 != prompt.shape[-1]:
|
260 |
+
ending = stage2_generate(model_stage2, prompt[:, output_duration * 50:], batch_size=1)
|
261 |
+
output = np.concatenate([output, ending], axis=0)
|
262 |
+
# Convert Stage2 output tokens back to numpy array using stage2’s codec manipulator.
|
263 |
+
output = codectool_stage2.ids2npy(output)
|
264 |
+
# Fix any invalid codes (if needed)
|
265 |
+
fixed_output = copy.deepcopy(output)
|
266 |
+
for i, line in enumerate(output):
|
267 |
+
for j, element in enumerate(line):
|
268 |
+
if element < 0 or element > 1023:
|
269 |
+
counter = Counter(line)
|
270 |
+
most_common = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
|
271 |
+
fixed_output[i, j] = most_common
|
272 |
+
np.save(output_filename, fixed_output)
|
273 |
+
stage2_result.append(output_filename)
|
274 |
+
return stage2_result
|
275 |
+
|
276 |
+
# ----------------------- Main Generation Function (Stage1 + Stage2) -----------------------
|
277 |
@spaces.GPU(duration=120)
|
278 |
def generate_music(
|
279 |
max_new_tokens=5,
|
280 |
run_n_segments=2,
|
281 |
+
genre_txt="",
|
282 |
+
lyrics_txt="",
|
283 |
use_audio_prompt=False,
|
284 |
audio_prompt_path="",
|
285 |
prompt_start_time=0.0,
|
286 |
prompt_end_time=30.0,
|
|
|
287 |
rescale=False,
|
288 |
):
|
289 |
+
# Scale max_new_tokens (e.g. seconds * 100 tokens per second)
|
290 |
+
max_new_tokens_scaled = max_new_tokens * 100
|
|
|
291 |
|
292 |
+
# Use a temporary directory to store intermediate stage outputs.
|
293 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
294 |
+
stage1_output_dir = os.path.join(tmp_dir, "stage1")
|
295 |
+
stage2_output_dir = os.path.join(tmp_dir, "stage2")
|
296 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
297 |
+
os.makedirs(stage2_output_dir, exist_ok=True)
|
298 |
|
299 |
+
# ---------------- Stage 1: Text-to-Music Generation ----------------
|
300 |
+
genres = genre_txt.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
lyrics_segments = split_lyrics(lyrics_txt + "\n")
|
302 |
full_lyrics = "\n".join(lyrics_segments)
|
|
|
303 |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
304 |
prompt_texts += lyrics_segments
|
305 |
|
306 |
random_id = uuid.uuid4()
|
307 |
raw_output = None
|
308 |
|
309 |
+
# Decoding config
|
310 |
top_p = 0.93
|
311 |
temperature = 1.0
|
312 |
repetition_penalty = 1.2
|
313 |
|
314 |
+
# Pre-tokenize special tokens
|
315 |
+
start_of_segment = mmtokenizer.tokenize("[start_of_segment]")
|
316 |
+
end_of_segment = mmtokenizer.tokenize("[end_of_segment]")
|
317 |
+
soa_token = mmtokenizer.soa
|
318 |
+
eoa_token = mmtokenizer.eoa
|
319 |
|
|
|
320 |
global_prompt_ids = mmtokenizer.tokenize(prompt_texts[0])
|
321 |
+
run_n = min(run_n_segments + 1, len(prompt_texts))
|
322 |
+
for i, p in enumerate(tqdm(prompt_texts[:run_n], desc="Stage1 Generation")):
|
323 |
+
section_text = p.replace("[start_of_segment]", "").replace("[end_of_segment]", "")
|
|
|
|
|
|
|
324 |
guidance_scale = 1.5 if i <= 1 else 1.2
|
325 |
if i == 0:
|
|
|
326 |
continue
|
|
|
|
|
327 |
if i == 1:
|
328 |
if use_audio_prompt:
|
329 |
audio_prompt = load_audio_mono(audio_prompt_path)
|
330 |
audio_prompt = audio_prompt.unsqueeze(0)
|
331 |
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
|
332 |
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
|
|
|
333 |
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
|
334 |
code_ids = codectool.npy2ids(raw_codes[0])
|
|
|
335 |
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
|
336 |
audio_prompt_codec_ids = [soa_token] + codectool.sep_ids + audio_prompt_codec + [eoa_token]
|
337 |
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
|
|
|
344 |
|
345 |
prompt_ids_tensor = torch.as_tensor(prompt_ids, device=device).unsqueeze(0)
|
346 |
if raw_output is not None:
|
|
|
347 |
input_ids = torch.cat([raw_output, prompt_ids_tensor], dim=1)
|
348 |
else:
|
349 |
input_ids = prompt_ids_tensor
|
350 |
|
351 |
+
max_context = 16384 - max_new_tokens_scaled - 1
|
|
|
352 |
if input_ids.shape[-1] > max_context:
|
353 |
input_ids = input_ids[:, -max_context:]
|
|
|
354 |
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
|
355 |
output_seq = model.generate(
|
356 |
input_ids=input_ids,
|
357 |
+
max_new_tokens=max_new_tokens_scaled,
|
358 |
min_new_tokens=100,
|
359 |
do_sample=True,
|
360 |
top_p=top_p,
|
|
|
367 |
BlockTokenRangeProcessor(32016, 32016)
|
368 |
]),
|
369 |
guidance_scale=guidance_scale,
|
370 |
+
use_cache=True,
|
371 |
)
|
|
|
372 |
if output_seq[0, -1].item() != eoa_token:
|
373 |
tensor_eoa = torch.as_tensor([[eoa_token]], device=device)
|
374 |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
|
|
375 |
if raw_output is not None:
|
376 |
new_tokens = output_seq[:, input_ids.shape[-1]:]
|
377 |
raw_output = torch.cat([raw_output, prompt_ids_tensor, new_tokens], dim=1)
|
378 |
else:
|
379 |
raw_output = output_seq
|
380 |
|
381 |
+
# Save Stage1 outputs (vocal & instrumental) as npy files.
|
382 |
ids = raw_output[0].cpu().numpy()
|
383 |
soa_idx = np.where(ids == soa_token)[0]
|
384 |
eoa_idx = np.where(ids == eoa_token)[0]
|
385 |
if len(soa_idx) != len(eoa_idx):
|
386 |
+
raise ValueError(f"invalid pairs of soa and eoa: {len(soa_idx)} vs {len(eoa_idx)}")
|
|
|
387 |
vocals_list = []
|
388 |
instrumentals_list = []
|
389 |
+
range_begin = 1 if use_audio_prompt else 0
|
390 |
+
for i in range(range_begin, len(soa_idx)):
|
391 |
+
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
|
|
|
392 |
if codec_ids[0] == 32016:
|
393 |
codec_ids = codec_ids[1:]
|
|
|
394 |
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
|
|
|
395 |
reshaped = rearrange(codec_ids, "(n b) -> b n", b=2)
|
396 |
vocals_list.append(codectool.ids2npy(reshaped[0]))
|
397 |
instrumentals_list.append(codectool.ids2npy(reshaped[1]))
|
398 |
vocals = np.concatenate(vocals_list, axis=1)
|
399 |
instrumentals = np.concatenate(instrumentals_list, axis=1)
|
|
|
|
|
400 |
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{str(random_id).replace('.', '@')}.npy")
|
401 |
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{str(random_id).replace('.', '@')}.npy")
|
402 |
np.save(vocal_save_path, vocals)
|
403 |
np.save(inst_save_path, instrumentals)
|
404 |
stage1_output_set = [vocal_save_path, inst_save_path]
|
405 |
|
406 |
+
# (Optional) Offload Stage1 model from GPU to free memory.
|
407 |
+
model.cpu()
|
408 |
+
torch.cuda.empty_cache()
|
409 |
+
|
410 |
+
# ---------------- Stage 2: Refinement/Upsampling ----------------
|
411 |
+
print("Stage 2 inference...")
|
412 |
+
model_stage2 = AutoModelForCausalLM.from_pretrained(
|
413 |
+
STAGE2_MODEL,
|
414 |
+
torch_dtype=torch.float16,
|
415 |
+
attn_implementation="flash_attention_2",
|
416 |
+
).to(device)
|
417 |
+
model_stage2.eval()
|
418 |
+
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=STAGE2_BATCH_SIZE)
|
419 |
+
print("Stage 2 inference completed.")
|
420 |
+
|
421 |
+
# ---------------- Reconstruct Audio from Stage2 Tokens ----------------
|
422 |
+
recons_output_dir = os.path.join(tmp_dir, "recons")
|
423 |
recons_mix_dir = os.path.join(recons_output_dir, "mix")
|
424 |
os.makedirs(recons_mix_dir, exist_ok=True)
|
425 |
tracks = []
|
426 |
+
for npy in stage2_result:
|
427 |
+
codec_result = np.load(npy)
|
428 |
with torch.inference_mode():
|
|
|
429 |
input_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)
|
430 |
decoded_waveform = codec_model.decode(input_tensor)
|
431 |
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
432 |
+
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
433 |
tracks.append(save_path)
|
434 |
+
save_audio(decoded_waveform, save_path, 16000, rescale)
|
435 |
+
# Mix vocal and instrumental tracks:
|
436 |
+
mix_audio = None
|
437 |
+
vocal_audio = None
|
438 |
+
instrumental_audio = None
|
439 |
for inst_path in tracks:
|
440 |
try:
|
441 |
+
if (inst_path.endswith(".wav") or inst_path.endswith(".mp3")) and "instrumental" in inst_path:
|
442 |
+
vocal_path = inst_path.replace("instrumental", "vocal")
|
443 |
if not os.path.exists(vocal_path):
|
444 |
continue
|
445 |
+
vocal_data, sr = sf.read(vocal_path)
|
446 |
+
instrumental_data, _ = sf.read(inst_path)
|
447 |
+
mix_data = (vocal_data + instrumental_data) / 1.0
|
448 |
+
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace("instrumental", "mixed"))
|
449 |
+
sf.write(recons_mix, mix_data, sr)
|
450 |
+
mix_audio = (sr, (mix_data * 32767).astype(np.int16))
|
451 |
+
vocal_audio = (sr, (vocal_data * 32767).astype(np.int16))
|
452 |
+
instrumental_audio = (sr, (instrumental_data * 32767).astype(np.int16))
|
453 |
except Exception as e:
|
454 |
print("Mixing error:", e)
|
455 |
return None, None, None
|
456 |
|
457 |
+
# ---------------- Vocoder Upsampling and Post Processing ----------------
|
458 |
+
print("Vocoder upsampling...")
|
459 |
+
vocal_decoder, inst_decoder = build_codec_model(VOCODER_CONFIG_PATH, VOCAL_DECODER_PATH, INST_DECODER_PATH)
|
460 |
+
vocoder_output_dir = os.path.join(tmp_dir, "vocoder")
|
461 |
+
vocoder_stems_dir = os.path.join(vocoder_output_dir, "stems")
|
462 |
+
vocoder_mix_dir = os.path.join(vocoder_output_dir, "mix")
|
463 |
+
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
464 |
+
os.makedirs(vocoder_mix_dir, exist_ok=True)
|
465 |
+
# Process each track with the vocoder (here we process vocal and instrumental separately)
|
466 |
+
if vocal_audio is not None and instrumental_audio is not None:
|
467 |
+
vocal_output = process_audio(
|
468 |
+
stage2_result[0],
|
469 |
+
os.path.join(vocoder_stems_dir, "vocal.mp3"),
|
470 |
+
rescale,
|
471 |
+
None,
|
472 |
+
vocal_decoder,
|
473 |
+
codec_model,
|
474 |
+
)
|
475 |
+
instrumental_output = process_audio(
|
476 |
+
stage2_result[1],
|
477 |
+
os.path.join(vocoder_stems_dir, "instrumental.mp3"),
|
478 |
+
rescale,
|
479 |
+
None,
|
480 |
+
inst_decoder,
|
481 |
+
codec_model,
|
482 |
+
)
|
483 |
+
try:
|
484 |
+
mix_output = instrumental_output + vocal_output
|
485 |
+
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
|
486 |
+
save_audio(mix_output, vocoder_mix, 44100, rescale)
|
487 |
+
print(f"Created vocoder mix: {vocoder_mix}")
|
488 |
+
except RuntimeError as e:
|
489 |
+
print(e)
|
490 |
+
print("Mixing vocoder outputs failed!")
|
491 |
+
else:
|
492 |
+
print("Missing vocal/instrumental outputs for vocoder stage.")
|
493 |
+
|
494 |
+
# Post-process: Replace low frequency of Stage1 reconstruction with energy-matched vocoder mix.
|
495 |
+
final_mix_path = os.path.join(tmp_dir, "final_mix.mp3")
|
496 |
+
try:
|
497 |
+
replace_low_freq_with_energy_matched(
|
498 |
+
a_file=recons_mix, # Stage1 mix at 16kHz
|
499 |
+
b_file=vocoder_mix, # Vocoder mix at 48kHz
|
500 |
+
c_file=final_mix_path,
|
501 |
+
cutoff_freq=5500.0
|
502 |
+
)
|
503 |
+
except Exception as e:
|
504 |
+
print("Post processing error:", e)
|
505 |
+
final_mix_path = recons_mix # Fall back to Stage1 mix
|
506 |
+
|
507 |
+
# Return final outputs as tuples: (sample_rate, np.int16 audio)
|
508 |
+
final_audio, vocal_audio, instrumental_audio = None, None, None
|
509 |
+
try:
|
510 |
+
final_audio_data, sr = sf.read(final_mix_path)
|
511 |
+
final_audio = (sr, (final_audio_data * 32767).astype(np.int16))
|
512 |
+
except Exception as e:
|
513 |
+
print("Final mix read error:", e)
|
514 |
+
return final_audio, vocal_audio, instrumental_audio
|
515 |
+
|
516 |
+
# ----------------------- Gradio Interface -----------------------
|
517 |
with gr.Blocks() as demo:
|
518 |
with gr.Column():
|
519 |
+
gr.Markdown("# YuE: Full-Song Generation (Stage1 + Stage2)")
|
520 |
gr.HTML(
|
521 |
"""
|
522 |
+
<div style="display:flex; column-gap:4px;">
|
523 |
+
<a href="https://github.com/multimodal-art-projection/YuE"><img src='https://img.shields.io/badge/GitHub-Repo-blue'></a>
|
524 |
+
<a href="https://map-yue.github.io"><img src='https://img.shields.io/badge/Project-Page-green'></a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
</div>
|
526 |
"""
|
527 |
)
|
528 |
with gr.Row():
|
529 |
with gr.Column():
|
530 |
+
genre_txt = gr.Textbox(label="Genre", placeholder="e.g. Bass Metalcore Thrash Metal Furious bright vocal male")
|
531 |
+
lyrics_txt = gr.Textbox(label="Lyrics", placeholder="Paste lyrics with segments such as [verse], [chorus], etc.")
|
532 |
with gr.Column():
|
533 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
534 |
+
max_new_tokens = gr.Slider(label="Duration of song (sec)", minimum=1, maximum=30, step=1, value=15, interactive=True)
|
535 |
+
use_audio_prompt = gr.Checkbox(label="Use Audio Prompt", value=False)
|
536 |
+
audio_prompt_path = gr.Textbox(label="Audio Prompt Filepath (if used)", placeholder="Path to audio file")
|
537 |
submit_btn = gr.Button("Submit")
|
538 |
music_out = gr.Audio(label="Mixed Audio Result")
|
539 |
+
with gr.Accordion(label="Vocal and Instrumental Results", open=False):
|
540 |
vocal_out = gr.Audio(label="Vocal Audio")
|
541 |
instrumental_out = gr.Audio(label="Instrumental Audio")
|
|
|
542 |
gr.Examples(
|
543 |
examples=[
|
544 |
[
|
|
|
586 |
outputs=[music_out, vocal_out, instrumental_out],
|
587 |
cache_examples=True,
|
588 |
cache_mode="eager",
|
589 |
+
fn=generate_music
|
590 |
)
|
|
|
591 |
submit_btn.click(
|
592 |
+
fn=generate_music,
|
593 |
+
inputs=[max_new_tokens, num_segments, genre_txt, lyrics_txt, use_audio_prompt, audio_prompt_path],
|
594 |
outputs=[music_out, vocal_out, instrumental_out]
|
595 |
)
|
596 |
+
gr.Markdown("## Contributions Welcome\nFeel free to contribute improvements or fixes.")
|
597 |
+
|
598 |
demo.queue().launch(show_error=True)
|