File size: 17,259 Bytes
6c02161 b2d8a8c 15059e3 c7840c9 b0cba66 c7840c9 51043fd b2d8a8c 6b78ccb 018f313 6b78ccb 2936f7d 6b78ccb 98d025d 15059e3 018f313 b0cba66 c7840c9 c022c1a 472d32d c022c1a 9df60ba c022c1a 15059e3 018f313 c022c1a 9df60ba b0cba66 472d32d 22e7225 018f313 b0cba66 6b78ccb c7840c9 01bd804 649509e c7840c9 018f313 dbb603e 0be5f10 b0cba66 c7840c9 ac7355c 0be5f10 649509e b0cba66 2936f7d 0d14459 a96918a 0be5f10 d21cf89 018f313 fa7e403 a96918a 018f313 c7840c9 b0cba66 018f313 c7840c9 858dd79 0be5f10 b0cba66 0be5f10 858dd79 b0cba66 5b4f482 b0cba66 ec39241 b0cba66 ec39241 b0cba66 ec39241 b0cba66 ec39241 b0cba66 a96918a 018f313 ce8b1dc 5b4f482 018f313 a96918a 0be5f10 b0cba66 0be5f10 c7840c9 4c600ac b0cba66 018f313 e6c9d72 b0cba66 5e9d470 b0cba66 310cc12 b0cba66 0be5f10 b0cba66 649509e c7840c9 018f313 649509e c7840c9 4c600ac dce5b4e 649509e b6479c7 c7840c9 649509e 24d1064 c7840c9 24d1064 4c600ac c7840c9 649509e 15059e3 a8a1233 31a0286 a8a1233 649509e 3fe10eb 649509e fd82b48 649509e 15059e3 85b4489 15059e3 5730add ce8b1dc 649509e c7840c9 4c600ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import gradio as gr
import subprocess
import os
import spaces
import shutil
import torch
import sys
import uuid
import re
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder if it does not exist
folder_path = './xcodec_mini_infer'
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./xcodec_mini_infer"
)
# Change working directory if needed
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
import numpy as np
import json
import argparse
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream
# ---------------------------------------------------------------------
# Load models, configurations, and tokenizers (run once at startup)
# ---------------------------------------------------------------------
device = "cuda:0"
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s1-7B-anneal-en-cot",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(device)
model.eval()
print("Model loaded.")
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(basic_model_config)
# Load codec model
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.eval()
print("Codec model loaded.")
# ---------------------------------------------------------------------
# Helper Classes and Functions
# ---------------------------------------------------------------------
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
# Convert to mono
audio = torch.mean(audio, dim=0, keepdim=True)
# Resample if needed
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
# ---------------------------
# CUDA Heavy Functions
# ---------------------------
@spaces.GPU(duration=175)
def requires_cuda_generation(input_ids, max_new_tokens, top_p, temperature, repetition_penalty, guidance_scale):
"""
Performs the CUDA-intensive generation using the language model.
"""
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100, # To avoid too-short generations
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([
BlockTokenRangeProcessor(0, 32002),
BlockTokenRangeProcessor(32016, 32016)
]),
guidance_scale=guidance_scale,
use_cache=True
)
# If the generated sequence does not end with the end-of-audio token, append it.
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
return output_seq
@spaces.GPU(duration=15)
def requires_cuda_decode(codec_result):
"""
Uses the codec model on the GPU to decode a given numpy array of codec IDs
into a waveform tensor.
"""
with torch.no_grad():
# Convert the numpy result to tensor and move to device
codec_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long)
# The expected shape is (seq_len, batch, channels), so we add and permute dims as needed.
codec_tensor = codec_tensor.unsqueeze(0).permute(1, 0, 2).to(device)
decoded_waveform = codec_model.decode(codec_tensor)
return decoded_waveform.cpu().squeeze(0)
def save_audio(wav: torch.Tensor, sample_rate: int, rescale: bool = False):
"""
Convert a waveform tensor to a numpy array (16-bit PCM) without writing to disk.
"""
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
# Return a tuple as expected by Gradio: (sample_rate, np.array)
return sample_rate, (wav.numpy() * 32767).astype(np.int16)
# ---------------------------------------------------------------------
# Main Generation Function (without temporary files/directories)
# ---------------------------------------------------------------------
def generate_music(
genre_txt=None,
lyrics_txt=None,
run_n_segments=2,
max_new_tokens=23,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
cuda_idx=0,
rescale=False,
):
"""
Generates music based on genre and lyrics (and optionally an audio prompt).
The heavy CUDA computations are performed in helper functions.
All intermediate data is kept in memory.
"""
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError("Please provide an audio prompt file when 'Use Audio Prompt' is enabled!")
# Scale max_new_tokens (e.g. each token may correspond to 100 time units)
max_new_tokens = max_new_tokens * 100
# Prepare prompt texts from genre and lyrics
genres = genre_txt.strip()
lyrics_segments = split_lyrics(lyrics_txt + "\n")
full_lyrics = "\n".join(lyrics_segments)
# The first prompt is the overall instruction and full lyrics.
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
# Then add each individual lyric segment.
prompt_texts += lyrics_segments
random_id = uuid.uuid4()
raw_output = None
# Generation configuration
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
# Limit the number of segments to generate (adding 1 because the first prompt is a header)
run_n_segments = min(run_n_segments + 1, len(prompt_texts))
print("Starting generation for segments:")
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
# Loop over each prompt segment
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
# Adjust guidance scale based on segment index
guidance_scale = 1.5 if i <= 1 else 1.2
# For the header prompt, we just use the tokenized text.
if i == 0:
continue
if i == 1:
# Process audio prompt if provided
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt = audio_prompt.unsqueeze(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
code_ids = codectool.npy2ids(raw_codes[0])
# Select a slice corresponding to the provided time range.
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
# Convert prompt tokens to tensor and move to device
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if (i > 1 and raw_output is not None) else prompt_ids
# Ensure input length does not exceed model context window (using last tokens if needed)
max_context = 16384 - max_new_tokens - 1
if input_ids.shape[-1] > max_context:
print(
f'Section {i}: input length {input_ids.shape[-1]} exceeds context length {max_context}. Using last {max_context} tokens.'
)
input_ids = input_ids[:, -max_context:]
# Generate new tokens using the CUDA-heavy helper function
output_seq = requires_cuda_generation(
input_ids,
max_new_tokens,
top_p,
temperature,
repetition_penalty,
guidance_scale
)
# Accumulate outputs across segments
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
print(f"Accumulated output length: {raw_output.shape[-1]} tokens")
# After generation, convert raw output tokens into codec IDs.
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
if len(soa_idx) != len(eoa_idx):
raise ValueError(f"Invalid pairs of soa and eoa: Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}")
vocals_list = []
instrumentals_list = []
# If an audio prompt was used, skip the first pair.
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
# Ensure even length for reshaping into two tracks (vocal and instrumental)
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
reshaped = rearrange(codec_ids, "(n b) -> b n", b=2)
vocals_ids = codectool.ids2npy(reshaped[0])
instrumentals_ids = codectool.ids2npy(reshaped[1])
vocals_list.append(vocals_ids)
instrumentals_list.append(instrumentals_ids)
# Concatenate segments in time dimension
vocals_codec = np.concatenate(vocals_list, axis=1)
instrumentals_codec = np.concatenate(instrumentals_list, axis=1)
print("Decoding audio on GPU...")
# Decode the codec arrays to waveforms using the CUDA helper function.
vocal_waveform = requires_cuda_decode(vocals_codec)
instrumental_waveform = requires_cuda_decode(instrumentals_codec)
# Mix the two waveforms (simple summation)
mixed_waveform = (vocal_waveform + instrumental_waveform) / 1.0
# Return the three audio outputs (mixed, vocal, instrumental) as tuples (sample_rate, np.array)
sample_rate = 16000
mixed_audio = save_audio(mixed_waveform, sample_rate, rescale)
vocal_audio = save_audio(vocal_waveform, sample_rate, rescale)
instrumental_audio = save_audio(instrumental_waveform, sample_rate, rescale)
return mixed_audio, vocal_audio, instrumental_audio
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
use_audio_prompt = gr.Checkbox(label="Use Audio Prompt?", value=False)
audio_prompt_input = gr.Audio(type="filepath", label="Audio Prompt (Optional)")
with gr.Column():
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Mixed Audio Result")
with gr.Accordion(label="Vocal and Instrumental Result", open=False):
vocal_out = gr.Audio(label="Vocal Audio")
instrumental_out = gr.Audio(label="Instrumental Audio")
gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")
submit_btn.click(
fn=generate_music,
inputs=[
genre_txt,
lyrics_txt,
num_segments,
max_new_tokens,
use_audio_prompt,
audio_prompt_input,
],
outputs=[music_out, vocal_out, instrumental_out]
)
gr.Examples(
examples=[
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
[chorus]
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
"""
],
[
"Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar",
"""[verse]
Step back cause I'll ignite
Won't quit without a fight
No escape, gear up, it's a fierce fight
Brace up, raise your hands up and light
Fear the might. Step back cause I'll ignite
Won't back down without a fight
It keeps going and going, the heat is on.
[chorus]
Hot flame. Hot flame.
Still here, still holding aim
I don't care if I'm bright or dim: nah.
I've made it clear, I'll make it again
All I want is my crew and my gain.
I'm feeling wild, got a bit of rebel style.
Locked inside my mind, hot flame.
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out, vocal_out, instrumental_out],
cache_examples=True,
cache_mode="eager",
fn=generate_music
)
demo.queue().launch(show_error=True)
|