File size: 17,259 Bytes
6c02161
b2d8a8c
15059e3
c7840c9
b0cba66
c7840c9
 
51043fd
 
b2d8a8c
6b78ccb
018f313
6b78ccb
 
 
2936f7d
6b78ccb
98d025d
15059e3
018f313
b0cba66
c7840c9
c022c1a
472d32d
c022c1a
 
 
9df60ba
c022c1a
15059e3
018f313
c022c1a
9df60ba
b0cba66
472d32d
 
 
 
 
 
 
22e7225
018f313
 
 
 
 
b0cba66
6b78ccb
c7840c9
 
 
 
 
01bd804
649509e
c7840c9
 
018f313
 
 
dbb603e
0be5f10
b0cba66
 
 
c7840c9
ac7355c
0be5f10
649509e
b0cba66
2936f7d
0d14459
 
a96918a
0be5f10
d21cf89
018f313
 
fa7e403
a96918a
018f313
c7840c9
b0cba66
018f313
 
c7840c9
 
858dd79
0be5f10
 
b0cba66
 
 
0be5f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
858dd79
b0cba66
 
 
5b4f482
b0cba66
ec39241
b0cba66
ec39241
 
 
 
 
b0cba66
ec39241
 
 
 
 
 
 
 
 
 
 
 
 
b0cba66
ec39241
 
 
 
 
b0cba66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a96918a
018f313
 
ce8b1dc
5b4f482
018f313
 
 
 
 
 
a96918a
0be5f10
b0cba66
 
 
0be5f10
c7840c9
4c600ac
b0cba66
 
018f313
e6c9d72
b0cba66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9d470
b0cba66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310cc12
b0cba66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0be5f10
b0cba66
649509e
 
c7840c9
018f313
 
 
 
 
 
 
 
 
 
 
 
 
649509e
 
c7840c9
 
4c600ac
dce5b4e
649509e
b6479c7
c7840c9
649509e
24d1064
c7840c9
24d1064
 
4c600ac
 
 
 
 
 
 
 
 
 
 
 
 
 
c7840c9
649509e
15059e3
a8a1233
 
 
 
 
 
 
31a0286
 
a8a1233
 
 
 
 
 
649509e
3fe10eb
649509e
fd82b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649509e
 
15059e3
 
85b4489
15059e3
5730add
ce8b1dc
649509e
c7840c9
4c600ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import gradio as gr
import subprocess
import os
import spaces
import shutil
import torch
import sys
import uuid
import re

print("Installing flash-attn...")
# Install flash attention
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True
)

from huggingface_hub import snapshot_download

# Create xcodec_mini_infer folder if it does not exist
folder_path = './xcodec_mini_infer'
if not os.path.exists(folder_path):
    os.mkdir(folder_path)
    print(f"Folder created at: {folder_path}")
else:
    print(f"Folder already exists at: {folder_path}")

snapshot_download(
    repo_id="m-a-p/xcodec_mini_infer",
    local_dir="./xcodec_mini_infer"
)

# Change working directory if needed
inference_dir = "."
try:
    os.chdir(inference_dir)
    print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
    print(f"Directory not found: {inference_dir}")
    exit(1)

sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))

import numpy as np
import json
import argparse
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream

# ---------------------------------------------------------------------
# Load models, configurations, and tokenizers (run once at startup)
# ---------------------------------------------------------------------
device = "cuda:0"

print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
    "m-a-p/YuE-s1-7B-anneal-en-cot",
    torch_dtype=torch.float16,
    attn_implementation="flash_attention_2",
).to(device)
model.eval()
print("Model loaded.")

basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'

mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(basic_model_config)

# Load codec model
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.eval()
print("Codec model loaded.")

# ---------------------------------------------------------------------
# Helper Classes and Functions
# ---------------------------------------------------------------------
class BlockTokenRangeProcessor(LogitsProcessor):
    def __init__(self, start_id, end_id):
        self.blocked_token_ids = list(range(start_id, end_id))

    def __call__(self, input_ids, scores):
        scores[:, self.blocked_token_ids] = -float("inf")
        return scores

def load_audio_mono(filepath, sampling_rate=16000):
    audio, sr = torchaudio.load(filepath)
    # Convert to mono
    audio = torch.mean(audio, dim=0, keepdim=True)
    # Resample if needed
    if sr != sampling_rate:
        resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
        audio = resampler(audio)
    return audio

def split_lyrics(lyrics: str):
    pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
    segments = re.findall(pattern, lyrics, re.DOTALL)
    structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
    return structured_lyrics

# ---------------------------
# CUDA Heavy Functions
# ---------------------------
@spaces.GPU(duration=175)
def requires_cuda_generation(input_ids, max_new_tokens, top_p, temperature, repetition_penalty, guidance_scale):
    """
    Performs the CUDA-intensive generation using the language model.
    """
    with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
        output_seq = model.generate(
            input_ids=input_ids,
            max_new_tokens=max_new_tokens,
            min_new_tokens=100,  # To avoid too-short generations
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            eos_token_id=mmtokenizer.eoa,
            pad_token_id=mmtokenizer.eoa,
            logits_processor=LogitsProcessorList([
                BlockTokenRangeProcessor(0, 32002),
                BlockTokenRangeProcessor(32016, 32016)
            ]),
            guidance_scale=guidance_scale,
            use_cache=True
        )
        # If the generated sequence does not end with the end-of-audio token, append it.
        if output_seq[0][-1].item() != mmtokenizer.eoa:
            tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
            output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
    return output_seq

@spaces.GPU(duration=15)
def requires_cuda_decode(codec_result):
    """
    Uses the codec model on the GPU to decode a given numpy array of codec IDs
    into a waveform tensor.
    """
    with torch.no_grad():
        # Convert the numpy result to tensor and move to device
        codec_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long)
        # The expected shape is (seq_len, batch, channels), so we add and permute dims as needed.
        codec_tensor = codec_tensor.unsqueeze(0).permute(1, 0, 2).to(device)
        decoded_waveform = codec_model.decode(codec_tensor)
    return decoded_waveform.cpu().squeeze(0)

def save_audio(wav: torch.Tensor, sample_rate: int, rescale: bool = False):
    """
    Convert a waveform tensor to a numpy array (16-bit PCM) without writing to disk.
    """
    limit = 0.99
    max_val = wav.abs().max()
    wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
    # Return a tuple as expected by Gradio: (sample_rate, np.array)
    return sample_rate, (wav.numpy() * 32767).astype(np.int16)

# ---------------------------------------------------------------------
# Main Generation Function (without temporary files/directories)
# ---------------------------------------------------------------------
def generate_music(
        genre_txt=None,
        lyrics_txt=None,
        run_n_segments=2,
        max_new_tokens=23,
        use_audio_prompt=False,
        audio_prompt_path="",
        prompt_start_time=0.0,
        prompt_end_time=30.0,
        cuda_idx=0,
        rescale=False,
):
    """
    Generates music based on genre and lyrics (and optionally an audio prompt).
    The heavy CUDA computations are performed in helper functions.
    All intermediate data is kept in memory.
    """
    if use_audio_prompt and not audio_prompt_path:
        raise FileNotFoundError("Please provide an audio prompt file when 'Use Audio Prompt' is enabled!")

    # Scale max_new_tokens (e.g. each token may correspond to 100 time units)
    max_new_tokens = max_new_tokens * 100

    # Prepare prompt texts from genre and lyrics
    genres = genre_txt.strip()
    lyrics_segments = split_lyrics(lyrics_txt + "\n")
    full_lyrics = "\n".join(lyrics_segments)
    # The first prompt is the overall instruction and full lyrics.
    prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
    # Then add each individual lyric segment.
    prompt_texts += lyrics_segments

    random_id = uuid.uuid4()
    raw_output = None

    # Generation configuration
    top_p = 0.93
    temperature = 1.0
    repetition_penalty = 1.2
    start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
    end_of_segment = mmtokenizer.tokenize('[end_of_segment]')

    # Limit the number of segments to generate (adding 1 because the first prompt is a header)
    run_n_segments = min(run_n_segments + 1, len(prompt_texts))

    print("Starting generation for segments:")
    print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))

    # Loop over each prompt segment
    for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
        section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
        # Adjust guidance scale based on segment index
        guidance_scale = 1.5 if i <= 1 else 1.2

        # For the header prompt, we just use the tokenized text.
        if i == 0:
            continue

        if i == 1:
            # Process audio prompt if provided
            if use_audio_prompt:
                audio_prompt = load_audio_mono(audio_prompt_path)
                audio_prompt = audio_prompt.unsqueeze(0)
                with torch.no_grad():
                    raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
                raw_codes = raw_codes.transpose(0, 1)
                raw_codes = raw_codes.cpu().numpy().astype(np.int16)
                code_ids = codectool.npy2ids(raw_codes[0])
                # Select a slice corresponding to the provided time range.
                audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
                audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
                sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
                head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
            else:
                head_id = mmtokenizer.tokenize(prompt_texts[0])
            prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
        else:
            prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids

        # Convert prompt tokens to tensor and move to device
        prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
        input_ids = torch.cat([raw_output, prompt_ids], dim=1) if (i > 1 and raw_output is not None) else prompt_ids

        # Ensure input length does not exceed model context window (using last tokens if needed)
        max_context = 16384 - max_new_tokens - 1
        if input_ids.shape[-1] > max_context:
            print(
                f'Section {i}: input length {input_ids.shape[-1]} exceeds context length {max_context}. Using last {max_context} tokens.'
            )
            input_ids = input_ids[:, -max_context:]

        # Generate new tokens using the CUDA-heavy helper function
        output_seq = requires_cuda_generation(
            input_ids,
            max_new_tokens,
            top_p,
            temperature,
            repetition_penalty,
            guidance_scale
        )

        # Accumulate outputs across segments
        if i > 1:
            raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
        else:
            raw_output = output_seq
        print(f"Accumulated output length: {raw_output.shape[-1]} tokens")

    # After generation, convert raw output tokens into codec IDs.
    ids = raw_output[0].cpu().numpy()
    soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
    eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
    if len(soa_idx) != len(eoa_idx):
        raise ValueError(f"Invalid pairs of soa and eoa: Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}")

    vocals_list = []
    instrumentals_list = []
    # If an audio prompt was used, skip the first pair.
    range_begin = 1 if use_audio_prompt else 0
    for i in range(range_begin, len(soa_idx)):
        codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
        if codec_ids[0] == 32016:
            codec_ids = codec_ids[1:]
        # Ensure even length for reshaping into two tracks (vocal and instrumental)
        codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
        reshaped = rearrange(codec_ids, "(n b) -> b n", b=2)
        vocals_ids = codectool.ids2npy(reshaped[0])
        instrumentals_ids = codectool.ids2npy(reshaped[1])
        vocals_list.append(vocals_ids)
        instrumentals_list.append(instrumentals_ids)

    # Concatenate segments in time dimension
    vocals_codec = np.concatenate(vocals_list, axis=1)
    instrumentals_codec = np.concatenate(instrumentals_list, axis=1)

    print("Decoding audio on GPU...")

    # Decode the codec arrays to waveforms using the CUDA helper function.
    vocal_waveform = requires_cuda_decode(vocals_codec)
    instrumental_waveform = requires_cuda_decode(instrumentals_codec)

    # Mix the two waveforms (simple summation)
    mixed_waveform = (vocal_waveform + instrumental_waveform) / 1.0

    # Return the three audio outputs (mixed, vocal, instrumental) as tuples (sample_rate, np.array)
    sample_rate = 16000
    mixed_audio = save_audio(mixed_waveform, sample_rate, rescale)
    vocal_audio = save_audio(vocal_waveform, sample_rate, rescale)
    instrumental_audio = save_audio(instrumental_waveform, sample_rate, rescale)
    return mixed_audio, vocal_audio, instrumental_audio

# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/multimodal-art-projection/YuE">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a>
            <a href="https://map-yue.github.io">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
            <a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
            </a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                genre_txt = gr.Textbox(label="Genre")
                lyrics_txt = gr.Textbox(label="Lyrics")
                use_audio_prompt = gr.Checkbox(label="Use Audio Prompt?", value=False)
                audio_prompt_input = gr.Audio(type="filepath", label="Audio Prompt (Optional)")
            with gr.Column():
                num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
                max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
                submit_btn = gr.Button("Submit")
                music_out = gr.Audio(label="Mixed Audio Result")
                with gr.Accordion(label="Vocal and Instrumental Result", open=False):
                    vocal_out = gr.Audio(label="Vocal Audio")
                    instrumental_out = gr.Audio(label="Instrumental Audio")
        gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")

        submit_btn.click(
            fn=generate_music,
            inputs=[
                genre_txt,
                lyrics_txt,
                num_segments,
                max_new_tokens,
                use_audio_prompt,
                audio_prompt_input,
            ],
            outputs=[music_out, vocal_out, instrumental_out]
        )

        gr.Examples(
            examples=[
                [
                    "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
                    """[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear

[chorus]
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
                    """
                ],
                [
                    "Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar",
                    """[verse]
Step back cause I'll ignite
Won't quit without a fight
No escape, gear up, it's a fierce fight
Brace up, raise your hands up and light
Fear the might. Step back cause I'll ignite
Won't back down without a fight
It keeps going and going, the heat is on.

[chorus]
Hot flame. Hot flame.
Still here, still holding aim
I don't care if I'm bright or dim: nah.
I've made it clear, I'll make it again
All I want is my crew and my gain.
I'm feeling wild, got a bit of rebel style.
Locked inside my mind, hot flame.
                    """
                ]
            ],
            inputs=[genre_txt, lyrics_txt],
            outputs=[music_out, vocal_out, instrumental_out],
            cache_examples=True,
            cache_mode="eager",
            fn=generate_music
        )

demo.queue().launch(show_error=True)