File size: 28,418 Bytes
ad8946e 8efc195 ad8946e f0f70ca 981f52f ad8946e 981f52f ad8946e 8efc195 ad8946e 5565ca5 ad8946e 3cd2108 86bd3cd 8efc195 7f69142 71c70ef 7f69142 5565ca5 71c70ef ad8946e 8efc195 ad8946e 981f52f ad8946e 21dc0af ad8946e f0f70ca ad8946e 8efc195 ad8946e 7f69142 ad8946e f0f70ca ad8946e 5565ca5 9b4ede0 5565ca5 01f0185 8efc195 5565ca5 5fcde85 9b4ede0 5fcde85 ad8946e dec9aa7 5fcde85 5565ca5 5fcde85 5565ca5 5fcde85 5565ca5 5fcde85 9b4ede0 5fcde85 5565ca5 5fcde85 5565ca5 5fcde85 9b4ede0 dec9aa7 9b4ede0 5565ca5 ad8946e dec9aa7 ad8946e 86bd3cd 981f52f 86bd3cd 981f52f 86bd3cd dec9aa7 86bd3cd 981f52f 5565ca5 ad8946e 5565ca5 8efc195 d15f2d4 ad8946e 8efc195 ad8946e 21dc0af fd4c3a4 d431c9d 21dc0af d431c9d ad8946e a30b6a4 ad8946e fd4c3a4 981f52f ad8946e a30b6a4 0702c36 a30b6a4 ad8946e 21dc0af a30b6a4 ad8946e a30b6a4 ad8946e a30b6a4 ad8946e a30b6a4 ad8946e a30b6a4 fd4c3a4 ad8946e 7f69142 5565ca5 0702c36 5565ca5 0702c36 981f52f 0702c36 fd4c3a4 ad8946e 5565ca5 a30b6a4 ad8946e fd4c3a4 dec9aa7 e29438c dec9aa7 fd4c3a4 dec9aa7 981f52f 86bd3cd 21dc0af 191a4f0 86bd3cd ad8946e 8efc195 5565ca5 21dc0af dec9aa7 191a4f0 8efc195 21dc0af 191a4f0 86bd3cd 21dc0af 86bd3cd d431c9d 21dc0af d431c9d 191a4f0 d431c9d 191a4f0 8efc195 dec9aa7 8efc195 fd4c3a4 8efc195 981f52f 8efc195 981f52f 86bd3cd 8efc195 7a942e5 86bd3cd ad8946e fd4c3a4 86bd3cd 8efc195 21dc0af 8efc195 191a4f0 8efc195 21dc0af 191a4f0 86bd3cd d431c9d 191a4f0 d431c9d 191a4f0 8efc195 dec9aa7 8efc195 fd4c3a4 8efc195 981f52f 8efc195 dec9aa7 fd4c3a4 5565ca5 8efc195 86bd3cd 8efc195 5565ca5 21dc0af 981f52f 21dc0af 981f52f 21dc0af fd4c3a4 21dc0af 981f52f fd4c3a4 5f8442e 5565ca5 ad8946e 8efc195 1848c43 5565ca5 8efc195 5565ca5 8efc195 1848c43 dec9aa7 ad8946e dec9aa7 981f52f 21dc0af ad8946e dec9aa7 86bd3cd 981f52f ad8946e 1848c43 ad8946e 1848c43 5565ca5 8efc195 ad8946e fd4c3a4 21dc0af fd4c3a4 80b48eb 5565ca5 80b48eb dec9aa7 80b48eb 5565ca5 fd4c3a4 dec9aa7 fd4c3a4 dec9aa7 80b48eb 42597fe 21dc0af 80b48eb 54b13e2 9b4ede0 86bd3cd 191a4f0 d431c9d 191a4f0 54b13e2 191a4f0 dec9aa7 54b13e2 9b4ede0 21dc0af b31f036 1848c43 dec9aa7 981f52f dec9aa7 21dc0af 5565ca5 2d26eaf 01f0185 2d26eaf 01f0185 21dc0af 5565ca5 21dc0af ad8946e 21dc0af dec9aa7 ad8946e e765d79 981f52f 54b13e2 b31f036 8efc195 21dc0af 3dee4f6 353d877 dec9aa7 21dc0af dec9aa7 86bd3cd dec9aa7 981f52f ad8946e 21dc0af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import seaborn as sns
from facenet_pytorch import InceptionResnetV1, MTCNN
import mediapipe as mp
from fer import FER
from scipy import interpolate
from sklearn.cluster import DBSCAN, KMeans
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import silhouette_score
import umap
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from moviepy.editor import VideoFileClip
from PIL import Image
import gradio as gr
import tempfile
import shutil
import io
# Suppress TensorFlow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
matplotlib.rcParams['figure.dpi'] = 400
matplotlib.rcParams['savefig.dpi'] = 400
# Initialize models and other global variables
device = 'cuda' if torch.cuda.is_available() else 'cpu'
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.975, 0.975, 0.975], min_face_size=100)
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
emotion_detector = FER(mtcnn=False)
def frame_to_timecode(frame_num, total_frames, duration):
total_seconds = (frame_num / total_frames) * duration
hours = int(total_seconds // 3600)
minutes = int((total_seconds % 3600) // 60)
seconds = int(total_seconds % 60)
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
def get_face_embedding_and_emotion(face_img):
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
face_tensor = (face_tensor - 0.5) / 0.5
face_tensor = face_tensor.to(device)
with torch.no_grad():
embedding = model(face_tensor)
emotions = emotion_detector.detect_emotions(face_img)
if emotions:
emotion_dict = emotions[0]['emotions']
else:
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']}
return embedding.cpu().numpy().flatten(), emotion_dict
def alignFace(img):
img_raw = img.copy()
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return None
landmarks = results.multi_face_landmarks[0].landmark
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y],
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y],
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]])
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y],
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y],
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]])
left_eye_center = left_eye.mean(axis=0).astype(np.int32)
right_eye_center = right_eye.mean(axis=0).astype(np.int32)
dY = right_eye_center[1] - left_eye_center[1]
dX = right_eye_center[0] - left_eye_center[0]
angle = np.degrees(np.arctan2(dY, dX))
desired_angle = 0
angle_diff = desired_angle - angle
height, width = img_raw.shape[:2]
center = (width // 2, height // 2)
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1)
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
return new_img
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
os.makedirs(output_folder, exist_ok=True)
clip = VideoFileClip(video_path)
original_fps = clip.fps
duration = clip.duration
total_frames = int(duration * original_fps)
step = max(1, original_fps / desired_fps)
total_frames_to_extract = int(total_frames / step)
frame_count = 0
for t in np.arange(0, duration, step / original_fps):
frame = clip.get_frame(t)
img = Image.fromarray(frame)
img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"))
frame_count += 1
if progress_callback:
progress = min(100, (frame_count / total_frames_to_extract) * 100)
progress_callback(progress, f"Extracting frame")
if frame_count >= total_frames_to_extract:
break
clip.close()
return frame_count, original_fps
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
embeddings_by_frame = {}
emotions_by_frame = {}
aligned_face_paths = []
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
for i in range(0, len(frame_files), batch_size):
batch_files = frame_files[i:i + batch_size]
batch_frames = []
batch_nums = []
for frame_file in batch_files:
frame_num = int(frame_file.split('_')[1].split('.')[0])
frame_path = os.path.join(frames_folder, frame_file)
frame = cv2.imread(frame_path)
if frame is not None:
batch_frames.append(frame)
batch_nums.append(frame_num)
if batch_frames:
batch_boxes, batch_probs = mtcnn.detect(batch_frames)
for j, (frame, frame_num, boxes, probs) in enumerate(
zip(batch_frames, batch_nums, batch_boxes, batch_probs)):
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
face = frame[y1:y2, x1:x2]
if face.size > 0:
aligned_face = alignFace(face)
if aligned_face is not None:
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
cv2.imwrite(output_path, aligned_face_resized)
aligned_face_paths.append(output_path)
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
embeddings_by_frame[frame_num] = embedding
emotions_by_frame[frame_num] = emotion
progress((i + len(batch_files)) / frame_count,
f"Processing frames {i + 1} to {min(i + len(batch_files), frame_count)} of {frame_count}")
return embeddings_by_frame, emotions_by_frame, aligned_face_paths
def cluster_faces(embeddings):
if len(embeddings) < 2:
print("Not enough faces for clustering. Assigning all to one cluster.")
return np.zeros(len(embeddings), dtype=int)
X = np.stack(embeddings)
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
clusters = dbscan.fit_predict(X)
if np.all(clusters == -1):
print("DBSCAN assigned all to noise. Considering as one cluster.")
return np.zeros(len(embeddings), dtype=int)
return clusters
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
os.makedirs(person_folder, exist_ok=True)
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
shutil.copy(src, dst)
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder,
num_components, video_duration):
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
person_data = {}
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(),
emotions_by_frame.items(), clusters):
if cluster not in person_data:
person_data[cluster] = []
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))
largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
data = person_data[largest_cluster]
data.sort(key=lambda x: x[0])
frames, embeddings, emotions_data = zip(*data)
embeddings_array = np.array(embeddings)
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
reducer = umap.UMAP(n_components=num_components, random_state=1)
embeddings_reduced = reducer.fit_transform(embeddings)
scaler = MinMaxScaler(feature_range=(0, 1))
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)
total_frames = max(frames)
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
times_in_minutes = [frame / total_frames * video_duration / 60 for frame in frames]
df_data = {
'Frame': frames,
'Timecode': timecodes,
'Time (Minutes)': times_in_minutes,
'Embedding_Index': range(len(embeddings))
}
for i in range(num_components):
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]
for emotion in emotions:
df_data[emotion] = [e[emotion] for e in emotions_data]
df = pd.DataFrame(df_data)
return df, largest_cluster
def determine_optimal_anomalies(anomaly_scores, z_threshold=3.5):
mean = np.mean(anomaly_scores)
std = np.std(anomaly_scores)
threshold = mean + z_threshold * std
anomalies = anomaly_scores > threshold
return anomalies, np.where(anomalies)[0]
def timecode_to_seconds(timecode):
h, m, s = map(float, timecode.split(':'))
return h * 3600 + m * 60 + s
def group_similar_timecodes(timecodes, scores, threshold_seconds=10):
grouped = []
current_group = []
for i, (timecode, score) in enumerate(zip(timecodes, scores)):
if not current_group or abs(
timecode_to_seconds(timecode) - timecode_to_seconds(current_group[0][0])) <= threshold_seconds:
current_group.append((timecode, score, i))
else:
grouped.append(current_group)
current_group = [(timecode, score, i)]
if current_group:
grouped.append(current_group)
return grouped
class LSTMAutoencoder(nn.Module):
def __init__(self, input_size, hidden_size=64, num_layers=2):
super(LSTMAutoencoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, input_size)
def forward(self, x):
outputs, (hidden, _) = self.lstm(x)
out = self.fc(outputs)
return out
def lstm_anomaly_detection(X, feature_columns, epochs=100, batch_size=64):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = torch.FloatTensor(X).to(device)
if X.dim() == 2:
X = X.unsqueeze(0)
elif X.dim() == 1:
X = X.unsqueeze(0).unsqueeze(2)
elif X.dim() > 3:
raise ValueError(f"Input X should be 1D, 2D or 3D, but got {X.dim()} dimensions")
print(f"X shape after reshaping: {X.shape}")
train_size = int(0.9 * X.shape[1])
X_train, X_val = X[:, :train_size, :], X[:, train_size:, :]
model = LSTMAutoencoder(input_size=X.shape[2]).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output_train = model(X_train)
loss_train = criterion(output_train, X_train.squeeze(0))
loss_train.backward()
optimizer.step()
model.eval()
with torch.no_grad():
output_val = model(X_val)
loss_val = criterion(output_val, X_val.squeeze(0))
model.eval()
with torch.no_grad():
reconstructed = model(X).squeeze(0).cpu().numpy()
mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
anomalies_all, top_indices_all = determine_optimal_anomalies(mse_all)
component_columns = [col for col in feature_columns if col.startswith('Comp')]
component_indices = [feature_columns.index(col) for col in component_columns]
if len(component_indices) > 0:
mse_comp = np.mean(
np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
else:
mse_comp = mse_all
anomalies_comp, top_indices_comp = determine_optimal_anomalies(mse_comp)
return (anomalies_all, mse_all, top_indices_all,
anomalies_comp, mse_comp, top_indices_comp,
model)
def emotion_anomaly_detection(emotion_data, epochs=100, batch_size=64):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = torch.FloatTensor(emotion_data.values).to(device)
if X.dim() == 1:
X = X.unsqueeze(0).unsqueeze(2) # Add batch and feature dimensions
elif X.dim() == 2:
X = X.unsqueeze(0) # Add batch dimension
model = LSTMAutoencoder(input_size=1).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output = model(X)
loss = criterion(output, X)
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
reconstructed = model(X).squeeze(0).cpu().numpy()
mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
anomalies, top_indices = determine_optimal_anomalies(mse)
return anomalies, mse, top_indices
def normalize_scores(scores):
min_score = np.min(scores)
max_score = np.max(scores)
if max_score == min_score:
return np.full_like(scores, 100)
return ((scores - min_score) / (max_score - min_score)) * 100
def plot_to_image(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
buf.seek(0)
return buf
def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = torch.FloatTensor(embeddings).to(device)
if X.dim() == 2:
X = X.unsqueeze(0)
elif X.dim() == 1:
X = X.unsqueeze(0).unsqueeze(2)
model = LSTMAutoencoder(input_size=X.shape[2]).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output = model(X)
loss = criterion(output, X)
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
reconstructed = model(X).squeeze(0).cpu().numpy()
mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
anomalies, top_indices = determine_optimal_anomalies(mse)
return anomalies, mse, top_indices
def plot_anomaly_scores(df, anomaly_scores, top_indices, title, timecodes):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Filter out data points without faces
valid_indices = [i for i in range(len(anomaly_scores)) if i in df.index]
seconds = df['Seconds'].iloc[valid_indices].values
scores = anomaly_scores[valid_indices]
ax.scatter(seconds, scores, color='blue', alpha=0.7, s=10)
top_indices = [idx for idx in top_indices if idx in valid_indices]
ax.scatter(df['Seconds'].iloc[top_indices], anomaly_scores[top_indices], color='red', s=50, zorder=5)
# Calculate and plot baseline
non_anomalous_scores = np.delete(scores, top_indices)
baseline = np.mean(non_anomalous_scores)
ax.axhline(y=baseline, color='black', linestyle='--', linewidth=2.5)
ax.text(df['Seconds'].max(), baseline, f'Baseline ({baseline:.2f})',
verticalalignment='bottom', horizontalalignment='right', color='black')
grouped_timecodes = group_similar_timecodes([df['Timecode'].iloc[idx] for idx in top_indices],
scores[top_indices])
for group in grouped_timecodes:
max_score_idx = max(range(len(group)), key=lambda i: group[i][1])
timecode, score, idx = group[max_score_idx]
ax.annotate(timecode,
(df['Seconds'].iloc[top_indices[idx]], score),
xytext=(5, 5), textcoords='offset points',
fontsize=6, color='red')
max_seconds = df['Seconds'].max()
ax.set_xlim(0, max_seconds)
num_ticks = 100
ax.set_xticks(np.linspace(0, max_seconds, num_ticks))
ax.set_xticklabels([f"{int(x // 60):02d}:{int(x % 60):02d}" for x in ax.get_xticks()],
rotation=90, ha='center', va='top')
ax.set_xlabel('Time')
ax.set_ylabel('Anomaly Score')
ax.set_title(title)
ax.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
plt.close()
return fig
def plot_emotion(df, emotion, anomaly_scores, top_indices, color, timecodes):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Filter out data points without faces
valid_indices = [i for i in range(len(anomaly_scores)) if i in df.index]
seconds = df['Seconds'].iloc[valid_indices].values
scores = anomaly_scores[valid_indices]
ax.scatter(seconds, scores, color=color, alpha=0.7, s=10)
top_indices = [idx for idx in top_indices if idx in valid_indices]
ax.scatter(df['Seconds'].iloc[top_indices], anomaly_scores[top_indices], color='red', s=50, zorder=5)
# Calculate and plot baseline
non_anomalous_scores = np.delete(anomaly_scores, top_indices)
baseline = np.mean(non_anomalous_scores)
ax.axhline(y=baseline, color='black', linestyle='--', linewidth=2.5)
ax.text(df['Seconds'].max(), baseline, f'Baseline ({baseline:.2f})',
verticalalignment='bottom', horizontalalignment='right', color='black')
grouped_timecodes = group_similar_timecodes([df['Timecode'].iloc[idx] for idx in top_indices],
anomaly_scores[top_indices])
for group in grouped_timecodes:
max_score_idx = max(range(len(group)), key=lambda i: group[i][1])
timecode, score, idx = group[max_score_idx]
ax.annotate(timecode,
(df['Seconds'].iloc[top_indices[idx]], score),
xytext=(5, 5), textcoords='offset points',
fontsize=6, color='red')
max_seconds = df['Seconds'].max()
ax.set_xlim(0, max_seconds)
num_ticks = 100
ax.set_xticks(np.linspace(0, max_seconds, num_ticks))
ax.set_xticklabels([f"{int(x // 60):02d}:{int(x % 60):02d}" for x in ax.get_xticks()],
rotation=90, ha='center', va='top')
ax.set_xlabel('Time')
ax.set_ylabel(f'{emotion.capitalize()} Anomaly Score')
ax.set_title(f'{emotion.capitalize()} Anomaly Scores')
ax.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
plt.close()
return fig
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster):
face_samples = {"most_frequent": [], "others": []}
for cluster_folder in sorted(os.listdir(organized_faces_folder)):
if cluster_folder.startswith("person_"):
person_folder = os.path.join(organized_faces_folder, cluster_folder)
face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
if face_files:
cluster_id = int(cluster_folder.split('_')[1])
if cluster_id == largest_cluster:
for i, sample in enumerate(face_files):
face_path = os.path.join(person_folder, sample)
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
face_img = cv2.imread(face_path)
if face_img is not None:
small_face = cv2.resize(face_img, (160, 160))
cv2.imwrite(output_path, small_face)
face_samples["most_frequent"].append(output_path)
else:
for i, sample in enumerate(face_files):
face_path = os.path.join(person_folder, sample)
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
face_img = cv2.imread(face_path)
if face_img is not None:
small_face = cv2.resize(face_img, (160, 160))
cv2.imwrite(output_path, small_face)
face_samples["others"].append(output_path)
return face_samples
def process_video(video_path, num_components, desired_fps, batch_size, progress=gr.Progress()):
output_folder = "output"
os.makedirs(output_folder, exist_ok=True)
with tempfile.TemporaryDirectory() as temp_dir:
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
os.makedirs(aligned_faces_folder, exist_ok=True)
os.makedirs(organized_faces_folder, exist_ok=True)
clip = VideoFileClip(video_path)
video_duration = clip.duration
clip.close()
progress(0, "Starting frame extraction")
frames_folder = os.path.join(temp_dir, 'extracted_frames')
def extraction_progress(percent, message):
progress(percent / 100, f"Extracting frames")
frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
progress(1, "Frame extraction complete")
progress(0.3, "Processing frames")
embeddings_by_frame, emotions_by_frame, aligned_face_paths = process_frames(frames_folder, aligned_faces_folder,
frame_count,
progress, batch_size)
if not aligned_face_paths:
return ("No faces were extracted from the video.",
None, None, None, None, None, None, None, None)
progress(0.6, "Clustering faces")
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
clusters = cluster_faces(embeddings)
num_clusters = len(set(clusters)) # Get the number of unique clusters
progress(0.7, "Organizing faces")
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
progress(0.8, "Saving person data")
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
original_fps, temp_dir, num_components, video_duration)
progress(0.85, "Getting face samples")
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
progress(0.9, "Performing anomaly detection")
feature_columns = [col for col in df.columns if
col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
X = df[feature_columns].values
try:
anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(
X, feature_columns, batch_size=batch_size)
anomaly_scores_all = normalize_scores(anomaly_scores_all)
anomaly_scores_comp = normalize_scores(anomaly_scores_comp)
emotion_anomalies = {}
for emotion in ['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral']:
anomalies, scores, indices = emotion_anomaly_detection(df[emotion])
emotion_anomalies[emotion] = {
'anomalies': anomalies,
'scores': normalize_scores(scores),
'indices': indices
}
except Exception as e:
print(f"Error details: {str(e)}")
return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None, None, None
progress(0.95, "Generating plots")
try:
anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all,
"Facial Features + Emotions",
df['Timecode'].iloc[top_indices_all].values)
anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Facial Features",
df['Timecode'].iloc[top_indices_comp].values)
emotion_plots = [
plot_emotion(df, emotion,
emotion_anomalies[emotion]['scores'],
emotion_anomalies[emotion]['indices'],
color,
df['Timecode'].iloc[emotion_anomalies[emotion]['indices']].values)
for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'],
['purple', 'green', 'orange', 'darkblue', 'gold', 'grey'])
]
except Exception as e:
return f"Error generating plots: {str(e)}", None, None, None, None, None, None, None, None
progress(1.0, "Preparing results")
results = f"Number of persons/clusters detected: {num_clusters}\n\n"
results += f"Breakdown of persons/clusters:\n"
for cluster_id in range(num_clusters):
results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n"
return (
results,
anomaly_plot_all,
anomaly_plot_comp,
*emotion_plots,
face_samples["most_frequent"],
face_samples["others"]
)
gallery_outputs = [
gr.Gallery(label="Most Frequent Person Random Samples", columns=5, rows=2, height="auto"),
gr.Gallery(label="Other Persons Random Samples", columns=5, rows=1, height="auto")
]
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(),
gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Components"),
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Desired FPS"),
gr.Slider(minimum=1, maximum=32, step=1, value=8, label="Batch Size")
],
outputs=[
gr.Textbox(label="Anomaly Detection Results"),
gr.Plot(label="Anomaly Scores (Facial Features + Emotions)"),
gr.Plot(label="Anomaly Scores (Facial Features)"),
gr.Plot(label="Fear Anomalies"),
gr.Plot(label="Sad Anomalies"),
gr.Plot(label="Angry Anomalies"),
gr.Plot(label="Happy Anomalies"),
gr.Plot(label="Surprise Anomalies"),
gr.Plot(label="Neutral Anomalies"),
] + gallery_outputs,
title="Facial Expressions Anomaly Detection",
description="""
This application detects anomalies in facial expressions and emotions from a video input.
It identifies distinct persons in the video and provides sample faces for each, with multiple samples for the most frequent person.
Adjust the parameters as needed:
- Number of Components: Complexity of the facial expression model
- Desired FPS: Frames per second to analyze (lower for faster processing)
- Batch Size: Affects processing speed and memory usage
Click on any graph to enlarge it.
""",
allow_flagging="never"
)
iface.launch()
|