reab5555 commited on
Commit
e29438c
·
verified ·
1 Parent(s): dec9aa7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -312,8 +312,11 @@ def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, bat
312
 
313
  def emotion_anomaly_detection(emotion_data, num_anomalies=10, epochs=100, batch_size=64):
314
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
315
- X = torch.FloatTensor(emotion_data.values.reshape(-1, 1)).to(device)
316
- X = X.unsqueeze(0) # Add batch dimension
 
 
 
317
 
318
  model = LSTMAutoencoder(input_size=1).to(device)
319
  criterion = nn.MSELoss()
@@ -495,7 +498,7 @@ def process_video(video_path, num_anomalies, num_components, desired_fps, batch_
495
  anomaly_scores_all = normalize_scores(anomaly_scores_all)
496
  anomaly_scores_comp = normalize_scores(anomaly_scores_comp)
497
 
498
- # Perform anomaly detection for each emotion
499
  emotion_anomalies = {}
500
  for emotion in ['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral']:
501
  anomalies, scores, indices = emotion_anomaly_detection(df[emotion], num_anomalies=num_anomalies)
 
312
 
313
  def emotion_anomaly_detection(emotion_data, num_anomalies=10, epochs=100, batch_size=64):
314
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
315
+ X = torch.FloatTensor(emotion_data.values).to(device)
316
+ if X.dim() == 1:
317
+ X = X.unsqueeze(0).unsqueeze(2) # Add batch and feature dimensions
318
+ elif X.dim() == 2:
319
+ X = X.unsqueeze(0) # Add batch dimension
320
 
321
  model = LSTMAutoencoder(input_size=1).to(device)
322
  criterion = nn.MSELoss()
 
498
  anomaly_scores_all = normalize_scores(anomaly_scores_all)
499
  anomaly_scores_comp = normalize_scores(anomaly_scores_comp)
500
 
501
+ # Perform anomaly detection for each emotion using LSTM autoencoder
502
  emotion_anomalies = {}
503
  for emotion in ['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral']:
504
  anomalies, scores, indices = emotion_anomaly_detection(df[emotion], num_anomalies=num_anomalies)