Spaces:
Runtime error
Runtime error
File size: 3,659 Bytes
c513221 109adde 33d78b0 5e2c7ed eb48f29 5e2c7ed eb48f29 86743ba 33d78b0 eb48f29 5d9bf5a 33d78b0 eb48f29 33d78b0 eb48f29 5d9bf5a eb48f29 3b7350e 834f7ba 28413d5 33d78b0 28413d5 690f094 d253f4a 690f094 fd77b23 33d78b0 9cd3a95 cfeca25 690f094 081cd9c 5e2c7ed 28413d5 109adde 834f7ba 109adde 081cd9c 690f094 bdf16c0 28413d5 bdf16c0 eb48f29 bdf16c0 f466dd9 630a72e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import os
import asyncio
import concurrent.futures
from io import BytesIO
from diffusers import AutoPipelineForText2Image
import gradio as gr
from generate_prompts import generate_prompt
# Initialize model globally
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
def generate_image(prompt, prompt_name):
"""
Generates an image based on the provided prompt.
Parameters:
- prompt (str): The input text for image generation.
- prompt_name (str): A name for the prompt, used for logging.
Returns:
bytes: The generated image data in bytes format, or None if generation fails.
"""
try:
print(f"Generating image for {prompt_name}")
output = model(prompt=prompt, num_inference_steps=50, guidance_scale=7.5)
if isinstance(output.images, list) and len(output.images) > 0:
image = output.images[0]
buffered = BytesIO()
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
return image_bytes
else:
return None
except Exception as e:
print(f"An error occurred while generating image for {prompt_name}: {e}")
return None
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
"""
Generates images for all provided prompts in parallel using ProcessPoolExecutor.
Parameters:
- sentence_mapping (dict): Mapping between paragraph numbers and sentences.
- character_dict (dict): Dictionary mapping characters to their descriptions.
- selected_style (str): Selected illustration style.
Returns:
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
"""
prompts = []
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
prompts.append((paragraph_number, prompt))
loop = asyncio.get_running_loop()
with concurrent.futures.ProcessPoolExecutor() as pool:
tasks = [
loop.run_in_executor(pool, generate_image, prompt, f"Prompt {paragraph_number}")
for paragraph_number, prompt in prompts
]
responses = await asyncio.gather(*tasks)
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
return images
def process_prompt(sentence_mapping, character_dict, selected_style):
"""
Processes the provided prompts and generates images.
Parameters:
- sentence_mapping (dict): Mapping between paragraph numbers and sentences.
- character_dict (dict): Dictionary mapping characters to their descriptions.
- selected_style (str): Selected illustration style.
Returns:
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
"""
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
return cmpt_return
gradio_interface = gr.Interface(
fn=process_prompt,
inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")],
outputs="json"
).queue(default_concurrency_limit=20) # Set concurrency limit if needed
if __name__ == "__main__":
gradio_interface.launch()
|