File size: 3,659 Bytes
c513221
109adde
33d78b0
5e2c7ed
eb48f29
5e2c7ed
eb48f29
86743ba
33d78b0
eb48f29
5d9bf5a
33d78b0
eb48f29
 
 
 
 
 
 
 
 
 
33d78b0
eb48f29
 
 
 
 
 
 
5d9bf5a
eb48f29
 
 
3b7350e
834f7ba
28413d5
33d78b0
28413d5
 
 
 
 
 
 
 
690f094
 
d253f4a
690f094
fd77b23
33d78b0
 
 
 
 
 
 
9cd3a95
cfeca25
690f094
081cd9c
5e2c7ed
28413d5
 
 
 
 
 
 
 
 
109adde
 
 
 
 
 
834f7ba
109adde
081cd9c
690f094
bdf16c0
28413d5
bdf16c0
eb48f29
bdf16c0
f466dd9
630a72e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import asyncio
import concurrent.futures
from io import BytesIO
from diffusers import AutoPipelineForText2Image
import gradio as gr
from generate_prompts import generate_prompt

# Initialize model globally
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")

def generate_image(prompt, prompt_name):
    """
    Generates an image based on the provided prompt.
    Parameters:
        - prompt (str): The input text for image generation.
        - prompt_name (str): A name for the prompt, used for logging.
    Returns:
        bytes: The generated image data in bytes format, or None if generation fails.
    """
    try:
        print(f"Generating image for {prompt_name}")
        output = model(prompt=prompt, num_inference_steps=50, guidance_scale=7.5)
        if isinstance(output.images, list) and len(output.images) > 0:
            image = output.images[0]
            buffered = BytesIO()
            image.save(buffered, format="JPEG")
            image_bytes = buffered.getvalue()
            return image_bytes
        else:
            return None
    except Exception as e:
        print(f"An error occurred while generating image for {prompt_name}: {e}")
        return None

async def queue_api_calls(sentence_mapping, character_dict, selected_style):
    """
    Generates images for all provided prompts in parallel using ProcessPoolExecutor.
    Parameters:
        - sentence_mapping (dict): Mapping between paragraph numbers and sentences.
        - character_dict (dict): Dictionary mapping characters to their descriptions.
        - selected_style (str): Selected illustration style.
    Returns:
        dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
    """
    prompts = []
    for paragraph_number, sentences in sentence_mapping.items():
        combined_sentence = " ".join(sentences)
        prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
        prompts.append((paragraph_number, prompt))

    loop = asyncio.get_running_loop()
    with concurrent.futures.ProcessPoolExecutor() as pool:
        tasks = [
            loop.run_in_executor(pool, generate_image, prompt, f"Prompt {paragraph_number}")
            for paragraph_number, prompt in prompts
        ]
        responses = await asyncio.gather(*tasks)
    
    images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
    return images

def process_prompt(sentence_mapping, character_dict, selected_style):
    """
    Processes the provided prompts and generates images.
    Parameters:
        - sentence_mapping (dict): Mapping between paragraph numbers and sentences.
        - character_dict (dict): Dictionary mapping characters to their descriptions.
        - selected_style (str): Selected illustration style.
    Returns:
        dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
    """
    try:
        loop = asyncio.get_running_loop()
    except RuntimeError:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)

    cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
    return cmpt_return

gradio_interface = gr.Interface(
    fn=process_prompt,
    inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")],
    outputs="json"
).queue(default_concurrency_limit=20)  # Set concurrency limit if needed

if __name__ == "__main__":
    gradio_interface.launch()