RanM commited on
Commit
5d9bf5a
·
verified ·
1 Parent(s): fc524dd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -42
app.py CHANGED
@@ -4,42 +4,46 @@ from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
- from concurrent.futures import ThreadPoolExecutor
8
 
9
- # Load the model once outside of the function
10
- print("Loading the model...")
11
- model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
12
- print("Model loaded successfully.")
13
 
14
- def generate_image(prompt, prompt_name):
15
- try:
16
- print(f"Generating response for {prompt_name} with prompt: {prompt}")
17
- output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
18
- print(f"Output for {prompt_name}: {output}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- # Check if the model returned images
21
- if isinstance(output.images, list) and len(output.images) > 0:
22
- image = output.images[0]
23
- buffered = BytesIO()
24
- try:
25
- image.save(buffered, format="JPEG")
26
- image_bytes = buffered.getvalue()
27
- print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
28
- return image_bytes
29
- except Exception as e:
30
- print(f"Error saving image for {prompt_name}: {e}")
31
- return None
32
- else:
33
- raise Exception(f"No images returned by the model for {prompt_name}.")
34
- except Exception as e:
35
- print(f"Error generating image for {prompt_name}: {e}")
36
- return None
37
 
38
  async def queue_api_calls(sentence_mapping, character_dict, selected_style):
39
  print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
40
  prompts = []
41
 
42
- # Generate prompts for each paragraph
43
  for paragraph_number, sentences in sentence_mapping.items():
44
  combined_sentence = " ".join(sentences)
45
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
@@ -47,16 +51,10 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
47
  prompts.append((paragraph_number, prompt))
48
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
49
 
50
- # Set max_workers to the total number of prompts
51
- max_workers = len(prompts)
52
-
53
- # Generate images for each prompt in parallel using threading
54
- with ThreadPoolExecutor(max_workers=max_workers) as executor:
55
- loop = asyncio.get_running_loop()
56
- tasks = [loop.run_in_executor(executor, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
57
- print("Tasks created for image generation.")
58
- responses = await asyncio.gather(*tasks)
59
- print("Responses received from image generation tasks.")
60
 
61
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
62
  print(f"Images generated: {images}")
@@ -65,20 +63,16 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
65
  def process_prompt(sentence_mapping, character_dict, selected_style):
66
  print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
67
  try:
68
- # See if there is a loop already running. If there is, reuse it.
69
  loop = asyncio.get_running_loop()
70
  except RuntimeError:
71
- # Create new event loop if one is not running
72
  loop = asyncio.new_event_loop()
73
  asyncio.set_event_loop(loop)
74
  print("Event loop created.")
75
 
76
- # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
77
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
78
  print(f"process_prompt completed with return value: {cmpt_return}")
79
  return cmpt_return
80
 
81
- # Gradio interface with high concurrency limit
82
  gradio_interface = gr.Interface(
83
  fn=process_prompt,
84
  inputs=[
 
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
+ import ray
8
 
9
+ ray.init()
 
 
 
10
 
11
+ @ray.remote
12
+ class ModelActor:
13
+ def __init__(self):
14
+ print("Loading the model...")
15
+ self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
16
+ print("Model loaded successfully.")
17
+
18
+ def generate_image(self, prompt, prompt_name):
19
+ try:
20
+ print(f"Generating response for {prompt_name} with prompt: {prompt}")
21
+ output = self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
22
+ print(f"Output for {prompt_name}: {output}")
23
+
24
+ if isinstance(output.images, list) and len(output.images) > 0:
25
+ image = output.images[0]
26
+ buffered = BytesIO()
27
+ try:
28
+ image.save(buffered, format="JPEG")
29
+ image_bytes = buffered.getvalue()
30
+ print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
31
+ return image_bytes
32
+ except Exception as e:
33
+ print(f"Error saving image for {prompt_name}: {e}")
34
+ return None
35
+ else:
36
+ raise Exception(f"No images returned by the model for {prompt_name}.")
37
+ except Exception as e:
38
+ print(f"Error generating image for {prompt_name}: {e}")
39
+ return None
40
 
41
+ model_actor = ModelActor.remote()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  async def queue_api_calls(sentence_mapping, character_dict, selected_style):
44
  print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
45
  prompts = []
46
 
 
47
  for paragraph_number, sentences in sentence_mapping.items():
48
  combined_sentence = " ".join(sentences)
49
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
 
51
  prompts.append((paragraph_number, prompt))
52
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
53
 
54
+ tasks = [model_actor.generate_image.remote(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
55
+ print("Tasks created for image generation.")
56
+ responses = await asyncio.gather(*[ray.get(task) for task in tasks])
57
+ print("Responses received from image generation tasks.")
 
 
 
 
 
 
58
 
59
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
60
  print(f"Images generated: {images}")
 
63
  def process_prompt(sentence_mapping, character_dict, selected_style):
64
  print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
65
  try:
 
66
  loop = asyncio.get_running_loop()
67
  except RuntimeError:
 
68
  loop = asyncio.new_event_loop()
69
  asyncio.set_event_loop(loop)
70
  print("Event loop created.")
71
 
 
72
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
73
  print(f"process_prompt completed with return value: {cmpt_return}")
74
  return cmpt_return
75
 
 
76
  gradio_interface = gr.Interface(
77
  fn=process_prompt,
78
  inputs=[