Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,86 +12,91 @@ ray.init()
|
|
12 |
@ray.remote
|
13 |
class ModelActor:
|
14 |
def __init__(self):
|
15 |
-
|
|
|
|
|
16 |
self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
17 |
-
print("Model loaded successfully.")
|
18 |
|
19 |
-
def generate_image(self, prompt, prompt_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
start_time = time.time()
|
21 |
process_id = os.getpid()
|
22 |
try:
|
23 |
-
|
24 |
-
output = self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
25 |
-
print(f"[{process_id}] Output for {prompt_name}: {output}")
|
26 |
-
|
27 |
if isinstance(output.images, list) and len(output.images) > 0:
|
28 |
image = output.images[0]
|
29 |
buffered = BytesIO()
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
print(f"[{process_id}] Image bytes length for {prompt_name}: {len(image_bytes)}")
|
35 |
-
print(f"[{process_id}] Time taken for {prompt_name}: {end_time - start_time} seconds")
|
36 |
-
return image_bytes
|
37 |
-
except Exception as e:
|
38 |
-
print(f"[{process_id}] Error saving image for {prompt_name}: {e}")
|
39 |
-
return None
|
40 |
else:
|
41 |
-
|
42 |
except Exception as e:
|
43 |
-
print(f"[{process_id}] Error generating image for {prompt_name}: {e}")
|
44 |
return None
|
45 |
|
46 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
47 |
-
|
48 |
-
prompts
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
|
|
|
|
|
|
50 |
for paragraph_number, sentences in sentence_mapping.items():
|
51 |
combined_sentence = " ".join(sentences)
|
52 |
-
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
53 |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
54 |
prompts.append((paragraph_number, prompt))
|
55 |
-
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
56 |
|
57 |
num_prompts = len(prompts)
|
58 |
-
num_actors = min(num_prompts, 20)
|
59 |
model_actors = [ModelActor.remote() for _ in range(num_actors)]
|
60 |
-
|
61 |
tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)]
|
62 |
-
print("Tasks created for image generation.")
|
63 |
|
64 |
responses = await asyncio.gather(*[asyncio.to_thread(ray.get, task) for task in tasks])
|
65 |
-
print("Responses received from image generation tasks.")
|
66 |
-
|
67 |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
|
68 |
-
print(f"Images generated: {images}")
|
69 |
return images
|
70 |
|
71 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
try:
|
74 |
loop = asyncio.get_running_loop()
|
75 |
except RuntimeError:
|
76 |
loop = asyncio.new_event_loop()
|
77 |
asyncio.set_event_loop(loop)
|
78 |
-
print("Event loop created.")
|
79 |
|
80 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
81 |
-
print(f"process_prompt completed with return value: {cmpt_return}")
|
82 |
return cmpt_return
|
83 |
|
84 |
gradio_interface = gr.Interface(
|
85 |
fn=process_prompt,
|
86 |
-
inputs=[
|
87 |
-
gr.JSON(label="Sentence Mapping"),
|
88 |
-
gr.JSON(label="Character Dict"),
|
89 |
-
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
90 |
-
],
|
91 |
outputs="json"
|
92 |
)
|
93 |
|
94 |
if __name__ == "__main__":
|
95 |
-
print("Launching Gradio interface...")
|
96 |
gradio_interface.launch()
|
97 |
-
print("Gradio interface launched.")
|
|
|
12 |
@ray.remote
|
13 |
class ModelActor:
|
14 |
def __init__(self):
|
15 |
+
"""
|
16 |
+
Initializes the ModelActor class and loads the text-to-image model.
|
17 |
+
"""
|
18 |
self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
|
|
19 |
|
20 |
+
async def generate_image(self, prompt, prompt_name):
|
21 |
+
"""
|
22 |
+
Generates an image based on the provided prompt.
|
23 |
+
|
24 |
+
Parameters:
|
25 |
+
- prompt (str): The input text for image generation.
|
26 |
+
- prompt_name (str): A name for the prompt, used for logging.
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
bytes: The generated image data in bytes format, or None if generation fails.
|
30 |
+
"""
|
31 |
start_time = time.time()
|
32 |
process_id = os.getpid()
|
33 |
try:
|
34 |
+
output = await self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
|
|
|
|
|
|
35 |
if isinstance(output.images, list) and len(output.images) > 0:
|
36 |
image = output.images[0]
|
37 |
buffered = BytesIO()
|
38 |
+
image.save(buffered, format="JPEG")
|
39 |
+
image_bytes = buffered.getvalue()
|
40 |
+
end_time = time.time()
|
41 |
+
return image_bytes
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
else:
|
43 |
+
return None
|
44 |
except Exception as e:
|
|
|
45 |
return None
|
46 |
|
47 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
48 |
+
"""
|
49 |
+
Generates images for all provided prompts in parallel using Ray actors.
|
50 |
+
|
51 |
+
Parameters:
|
52 |
+
- sentence_mapping (dict): Mapping between paragraph numbers and sentences.
|
53 |
+
- character_dict (dict): Dictionary mapping characters to their descriptions.
|
54 |
+
- selected_style (str): Selected illustration style.
|
55 |
|
56 |
+
Returns:
|
57 |
+
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
|
58 |
+
"""
|
59 |
+
prompts = []
|
60 |
for paragraph_number, sentences in sentence_mapping.items():
|
61 |
combined_sentence = " ".join(sentences)
|
|
|
62 |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
63 |
prompts.append((paragraph_number, prompt))
|
|
|
64 |
|
65 |
num_prompts = len(prompts)
|
66 |
+
num_actors = min(num_prompts, 20)
|
67 |
model_actors = [ModelActor.remote() for _ in range(num_actors)]
|
|
|
68 |
tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)]
|
|
|
69 |
|
70 |
responses = await asyncio.gather(*[asyncio.to_thread(ray.get, task) for task in tasks])
|
|
|
|
|
71 |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
|
|
|
72 |
return images
|
73 |
|
74 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
75 |
+
"""
|
76 |
+
Processes the provided prompts and generates images.
|
77 |
+
|
78 |
+
Parameters:
|
79 |
+
- sentence_mapping (dict): Mapping between paragraph numbers and sentences.
|
80 |
+
- character_dict (dict): Dictionary mapping characters to their descriptions.
|
81 |
+
- selected_style (str): Selected illustration style.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
|
85 |
+
"""
|
86 |
try:
|
87 |
loop = asyncio.get_running_loop()
|
88 |
except RuntimeError:
|
89 |
loop = asyncio.new_event_loop()
|
90 |
asyncio.set_event_loop(loop)
|
|
|
91 |
|
92 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
|
|
93 |
return cmpt_return
|
94 |
|
95 |
gradio_interface = gr.Interface(
|
96 |
fn=process_prompt,
|
97 |
+
inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")],
|
|
|
|
|
|
|
|
|
98 |
outputs="json"
|
99 |
)
|
100 |
|
101 |
if __name__ == "__main__":
|
|
|
102 |
gradio_interface.launch()
|
|