Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,39 +4,67 @@ from generate_prompts import generate_prompt
|
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
# Load the model once outside of the function
|
9 |
print("Loading the model...")
|
10 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
11 |
print("Model loaded successfully.")
|
12 |
|
13 |
-
# Create
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
42 |
print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
@@ -46,12 +74,13 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
|
46 |
for paragraph_number, sentences in sentence_mapping.items():
|
47 |
combined_sentence = " ".join(sentences)
|
48 |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
49 |
-
prompt = generate_prompt(combined_sentence,
|
50 |
prompts.append((paragraph_number, prompt))
|
51 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
52 |
|
53 |
# Generate images for each prompt in parallel
|
54 |
-
|
|
|
55 |
print("Tasks created for image generation.")
|
56 |
responses = await asyncio.gather(*tasks)
|
57 |
print("Responses received from image generation tasks.")
|
@@ -71,6 +100,9 @@ def process_prompt(sentence_mapping, character_dict, selected_style):
|
|
71 |
asyncio.set_event_loop(loop)
|
72 |
print("Event loop created.")
|
73 |
|
|
|
|
|
|
|
74 |
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
|
75 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
76 |
print(f"process_prompt completed with return value: {cmpt_return}")
|
|
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
6 |
import gradio as gr
|
7 |
+
import threading
|
8 |
|
9 |
# Load the model once outside of the function
|
10 |
print("Loading the model...")
|
11 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
12 |
print("Model loaded successfully.")
|
13 |
|
14 |
+
# Create a thread-local storage object
|
15 |
+
thread_local = threading.local()
|
16 |
+
|
17 |
+
class Scheduler:
|
18 |
+
def __init__(self):
|
19 |
+
self._step = threading.local()
|
20 |
+
self._step.step = None
|
21 |
+
|
22 |
+
def _init_step_index(self):
|
23 |
+
self._step.step = 0
|
24 |
+
|
25 |
+
@property
|
26 |
+
def step(self):
|
27 |
+
return self._step.step
|
28 |
+
|
29 |
+
def step_process(self):
|
30 |
+
self._step.step += 1
|
31 |
+
|
32 |
+
scheduler = Scheduler()
|
33 |
+
|
34 |
+
def generate_image(prompt, prompt_name):
|
35 |
+
try:
|
36 |
+
# Initialize step index for the current thread
|
37 |
+
if scheduler.step is None:
|
38 |
+
scheduler._init_step_index()
|
39 |
+
|
40 |
+
print(f"Initial step index for {prompt_name}: {scheduler.step}")
|
41 |
+
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
42 |
+
|
43 |
+
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
44 |
+
|
45 |
+
# Update and print step index
|
46 |
+
scheduler.step_process()
|
47 |
+
print(f"Updated step index for {prompt_name}: {scheduler.step}")
|
48 |
+
|
49 |
+
print(f"Output for {prompt_name}: {output}")
|
50 |
+
|
51 |
+
# Check if the model returned images
|
52 |
+
if isinstance(output.images, list) and len(output.images) > 0:
|
53 |
+
image = output.images[0]
|
54 |
+
buffered = BytesIO()
|
55 |
+
try:
|
56 |
+
image.save(buffered, format="JPEG")
|
57 |
+
image_bytes = buffered.getvalue()
|
58 |
+
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
|
59 |
+
return image_bytes
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error saving image for {prompt_name}: {e}")
|
62 |
+
return None
|
63 |
+
else:
|
64 |
+
raise Exception(f"No images returned by the model for {prompt_name}.")
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error generating image for {prompt_name}: {e}")
|
67 |
+
return None
|
68 |
|
69 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
70 |
print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
|
|
74 |
for paragraph_number, sentences in sentence_mapping.items():
|
75 |
combined_sentence = " ".join(sentences)
|
76 |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
77 |
+
prompt = generate_prompt(combined_sentence, character_dict, selected_style) # Correct prompt generation
|
78 |
prompts.append((paragraph_number, prompt))
|
79 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
80 |
|
81 |
# Generate images for each prompt in parallel
|
82 |
+
loop = asyncio.get_running_loop()
|
83 |
+
tasks = [loop.run_in_executor(None, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
84 |
print("Tasks created for image generation.")
|
85 |
responses = await asyncio.gather(*tasks)
|
86 |
print("Responses received from image generation tasks.")
|
|
|
100 |
asyncio.set_event_loop(loop)
|
101 |
print("Event loop created.")
|
102 |
|
103 |
+
# Initialize thread-local variables
|
104 |
+
scheduler._init_step_index()
|
105 |
+
|
106 |
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
|
107 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
108 |
print(f"process_prompt completed with return value: {cmpt_return}")
|