RanM commited on
Commit
3b7350e
·
verified ·
1 Parent(s): 41a799e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -29
app.py CHANGED
@@ -4,39 +4,67 @@ from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
 
7
 
8
  # Load the model once outside of the function
9
  print("Loading the model...")
10
  model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
11
  print("Model loaded successfully.")
12
 
13
- # Create an asyncio lock
14
- lock = asyncio.Lock()
15
-
16
- async def generate_image(prompt, prompt_name):
17
- async with lock:
18
- try:
19
- print(f"Generating response for {prompt_name} with prompt: {prompt}")
20
- output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
21
- print(f"Output for {prompt_name}: {output}")
22
-
23
- # Check if the model returned images
24
- if isinstance(output.images, list) and len(output.images) > 0:
25
- image = output.images[0]
26
- buffered = BytesIO()
27
- try:
28
- image.save(buffered, format="JPEG")
29
- image_bytes = buffered.getvalue()
30
- print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
31
- return image_bytes
32
- except Exception as e:
33
- print(f"Error saving image for {prompt_name}: {e}")
34
- return None
35
- else:
36
- raise Exception(f"No images returned by the model for {prompt_name}.")
37
- except Exception as e:
38
- print(f"Error generating image for {prompt_name}: {e}")
39
- return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  async def queue_api_calls(sentence_mapping, character_dict, selected_style):
42
  print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
@@ -46,12 +74,13 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
46
  for paragraph_number, sentences in sentence_mapping.items():
47
  combined_sentence = " ".join(sentences)
48
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
49
- prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) # Correct prompt generation
50
  prompts.append((paragraph_number, prompt))
51
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
52
 
53
  # Generate images for each prompt in parallel
54
- tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
 
55
  print("Tasks created for image generation.")
56
  responses = await asyncio.gather(*tasks)
57
  print("Responses received from image generation tasks.")
@@ -71,6 +100,9 @@ def process_prompt(sentence_mapping, character_dict, selected_style):
71
  asyncio.set_event_loop(loop)
72
  print("Event loop created.")
73
 
 
 
 
74
  # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
75
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
76
  print(f"process_prompt completed with return value: {cmpt_return}")
 
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
+ import threading
8
 
9
  # Load the model once outside of the function
10
  print("Loading the model...")
11
  model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
12
  print("Model loaded successfully.")
13
 
14
+ # Create a thread-local storage object
15
+ thread_local = threading.local()
16
+
17
+ class Scheduler:
18
+ def __init__(self):
19
+ self._step = threading.local()
20
+ self._step.step = None
21
+
22
+ def _init_step_index(self):
23
+ self._step.step = 0
24
+
25
+ @property
26
+ def step(self):
27
+ return self._step.step
28
+
29
+ def step_process(self):
30
+ self._step.step += 1
31
+
32
+ scheduler = Scheduler()
33
+
34
+ def generate_image(prompt, prompt_name):
35
+ try:
36
+ # Initialize step index for the current thread
37
+ if scheduler.step is None:
38
+ scheduler._init_step_index()
39
+
40
+ print(f"Initial step index for {prompt_name}: {scheduler.step}")
41
+ print(f"Generating response for {prompt_name} with prompt: {prompt}")
42
+
43
+ output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
44
+
45
+ # Update and print step index
46
+ scheduler.step_process()
47
+ print(f"Updated step index for {prompt_name}: {scheduler.step}")
48
+
49
+ print(f"Output for {prompt_name}: {output}")
50
+
51
+ # Check if the model returned images
52
+ if isinstance(output.images, list) and len(output.images) > 0:
53
+ image = output.images[0]
54
+ buffered = BytesIO()
55
+ try:
56
+ image.save(buffered, format="JPEG")
57
+ image_bytes = buffered.getvalue()
58
+ print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
59
+ return image_bytes
60
+ except Exception as e:
61
+ print(f"Error saving image for {prompt_name}: {e}")
62
+ return None
63
+ else:
64
+ raise Exception(f"No images returned by the model for {prompt_name}.")
65
+ except Exception as e:
66
+ print(f"Error generating image for {prompt_name}: {e}")
67
+ return None
68
 
69
  async def queue_api_calls(sentence_mapping, character_dict, selected_style):
70
  print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
 
74
  for paragraph_number, sentences in sentence_mapping.items():
75
  combined_sentence = " ".join(sentences)
76
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
77
+ prompt = generate_prompt(combined_sentence, character_dict, selected_style) # Correct prompt generation
78
  prompts.append((paragraph_number, prompt))
79
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
80
 
81
  # Generate images for each prompt in parallel
82
+ loop = asyncio.get_running_loop()
83
+ tasks = [loop.run_in_executor(None, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
84
  print("Tasks created for image generation.")
85
  responses = await asyncio.gather(*tasks)
86
  print("Responses received from image generation tasks.")
 
100
  asyncio.set_event_loop(loop)
101
  print("Event loop created.")
102
 
103
+ # Initialize thread-local variables
104
+ scheduler._init_step_index()
105
+
106
  # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
107
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
108
  print(f"process_prompt completed with return value: {cmpt_return}")