Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,19 @@
|
|
1 |
-
import
|
|
|
2 |
from generate_prompts import generate_prompt
|
3 |
from diffusers import AutoPipelineForText2Image
|
4 |
from io import BytesIO
|
5 |
import gradio as gr
|
6 |
-
import
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
async def load_model():
|
12 |
global model
|
13 |
print("Loading the model...")
|
14 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
15 |
print("Model loaded successfully.")
|
16 |
|
17 |
-
|
18 |
-
asyncio.run(load_model())
|
19 |
-
|
20 |
-
async def generate_image(prompt, prompt_name):
|
21 |
try:
|
22 |
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
23 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
@@ -31,50 +27,40 @@ async def generate_image(prompt, prompt_name):
|
|
31 |
image.save(buffered, format="JPEG")
|
32 |
image_bytes = buffered.getvalue()
|
33 |
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
|
34 |
-
return image_bytes
|
35 |
except Exception as e:
|
36 |
print(f"Error saving image for {prompt_name}: {e}")
|
37 |
-
return None
|
38 |
else:
|
39 |
raise Exception(f"No images returned by the model for {prompt_name}.")
|
40 |
except Exception as e:
|
41 |
print(f"Error generating image for {prompt_name}: {e}")
|
42 |
-
return None
|
43 |
|
44 |
-
|
45 |
-
print(f"
|
|
|
46 |
prompts = []
|
47 |
-
|
48 |
-
# Generate prompts for each paragraph
|
49 |
for paragraph_number, sentences in sentence_mapping.items():
|
50 |
combined_sentence = " ".join(sentences)
|
51 |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
52 |
-
prompt = generate_prompt(combined_sentence, character_dict, selected_style)
|
53 |
prompts.append((paragraph_number, prompt))
|
54 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
responses = await asyncio.gather(*tasks)
|
60 |
-
print("Responses received from image generation tasks.")
|
61 |
|
62 |
-
images = {
|
63 |
print(f"Images generated: {images}")
|
64 |
return images
|
65 |
|
66 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
async with anyio.create_task_group() as task_group:
|
71 |
-
return await task_group.start(queue_api_calls, sentence_mapping, character_dict, selected_style)
|
72 |
-
|
73 |
-
cmpt_return = anyio.run(run_async)
|
74 |
-
print(f"process_prompt completed with return value: {cmpt_return}")
|
75 |
-
return cmpt_return
|
76 |
|
77 |
-
# Gradio interface with high concurrency limit
|
78 |
gradio_interface = gr.Interface(
|
79 |
fn=process_prompt,
|
80 |
inputs=[
|
|
|
1 |
+
import os
|
2 |
+
import multiprocessing
|
3 |
from generate_prompts import generate_prompt
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
6 |
import gradio as gr
|
7 |
+
import json
|
8 |
|
9 |
+
# Define a function to initialize the model. This will be called in each process.
|
10 |
+
def initialize_model():
|
|
|
|
|
11 |
global model
|
12 |
print("Loading the model...")
|
13 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
14 |
print("Model loaded successfully.")
|
15 |
|
16 |
+
def generate_image(prompt, prompt_name):
|
|
|
|
|
|
|
17 |
try:
|
18 |
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
19 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
|
|
27 |
image.save(buffered, format="JPEG")
|
28 |
image_bytes = buffered.getvalue()
|
29 |
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
|
30 |
+
return prompt_name, image_bytes
|
31 |
except Exception as e:
|
32 |
print(f"Error saving image for {prompt_name}: {e}")
|
33 |
+
return prompt_name, None
|
34 |
else:
|
35 |
raise Exception(f"No images returned by the model for {prompt_name}.")
|
36 |
except Exception as e:
|
37 |
print(f"Error generating image for {prompt_name}: {e}")
|
38 |
+
return prompt_name, None
|
39 |
|
40 |
+
def process_prompts(sentence_mapping, character_dict, selected_style):
|
41 |
+
print(f"process_prompts called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
42 |
+
|
43 |
prompts = []
|
|
|
|
|
44 |
for paragraph_number, sentences in sentence_mapping.items():
|
45 |
combined_sentence = " ".join(sentences)
|
46 |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
47 |
+
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
48 |
prompts.append((paragraph_number, prompt))
|
49 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
50 |
|
51 |
+
with multiprocessing.Pool(initializer=initialize_model) as pool:
|
52 |
+
tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
53 |
+
results = pool.starmap(generate_image, tasks)
|
|
|
|
|
54 |
|
55 |
+
images = {prompt_name: image for prompt_name, image in results}
|
56 |
print(f"Images generated: {images}")
|
57 |
return images
|
58 |
|
59 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
60 |
+
sentence_mapping = json.loads(sentence_mapping)
|
61 |
+
character_dict = json.loads(character_dict)
|
62 |
+
return process_prompts(sentence_mapping, character_dict, selected_style)
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
|
|
64 |
gradio_interface = gr.Interface(
|
65 |
fn=process_prompt,
|
66 |
inputs=[
|