Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,40 @@
|
|
| 1 |
import os
|
| 2 |
import asyncio
|
| 3 |
-
import time
|
| 4 |
-
from generate_prompts import generate_prompt
|
| 5 |
-
from diffusers import AutoPipelineForText2Image
|
| 6 |
from io import BytesIO
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
ray.init()
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def __init__(self):
|
| 15 |
-
"""
|
| 16 |
-
Initializes the ModelActor class and loads the text-to-image model.
|
| 17 |
-
"""
|
| 18 |
-
self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
return image_bytes
|
| 40 |
-
else:
|
| 41 |
-
return None
|
| 42 |
-
except Exception as e:
|
| 43 |
return None
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
| 46 |
"""
|
| 47 |
-
Generates images for all provided prompts in parallel using
|
| 48 |
Parameters:
|
| 49 |
- sentence_mapping (dict): Mapping between paragraph numbers and sentences.
|
| 50 |
- character_dict (dict): Dictionary mapping characters to their descriptions.
|
|
@@ -58,14 +48,8 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
|
| 58 |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
| 59 |
prompts.append((paragraph_number, prompt))
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
model_actors = [ModelActor.remote() for _ in range(num_actors)]
|
| 64 |
-
tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)]
|
| 65 |
-
|
| 66 |
-
# Convert ray.get(task) to awaitable coroutines
|
| 67 |
-
async_tasks = [asyncio.wrap_future(ray.get(task)) for task in tasks]
|
| 68 |
-
responses = await asyncio.gather(*async_tasks)
|
| 69 |
|
| 70 |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
|
| 71 |
return images
|
|
@@ -93,7 +77,7 @@ gradio_interface = gr.Interface(
|
|
| 93 |
fn=process_prompt,
|
| 94 |
inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")],
|
| 95 |
outputs="json"
|
| 96 |
-
).queue(default_concurrency_limit=20) # Set concurrency limit
|
| 97 |
|
| 98 |
if __name__ == "__main__":
|
| 99 |
gradio_interface.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
import asyncio
|
|
|
|
|
|
|
|
|
|
| 3 |
from io import BytesIO
|
| 4 |
+
from diffusers import AutoPipelineForText2Image
|
| 5 |
import gradio as gr
|
| 6 |
+
from generate_prompts import generate_prompt
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Initialize model
|
| 9 |
+
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
async def generate_image(prompt, prompt_name):
|
| 12 |
+
"""
|
| 13 |
+
Generates an image based on the provided prompt.
|
| 14 |
+
Parameters:
|
| 15 |
+
- prompt (str): The input text for image generation.
|
| 16 |
+
- prompt_name (str): A name for the prompt, used for logging.
|
| 17 |
+
Returns:
|
| 18 |
+
bytes: The generated image data in bytes format, or None if generation fails.
|
| 19 |
+
"""
|
| 20 |
+
try:
|
| 21 |
+
print(f"Generating image for {prompt_name}")
|
| 22 |
+
output = await model(prompt=prompt, num_inference_steps=50, guidance_scale=7.5)
|
| 23 |
+
if isinstance(output.images, list) and len(output.images) > 0:
|
| 24 |
+
image = output.images[0]
|
| 25 |
+
buffered = BytesIO()
|
| 26 |
+
image.save(buffered, format="JPEG")
|
| 27 |
+
image_bytes = buffered.getvalue()
|
| 28 |
+
return image_bytes
|
| 29 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
return None
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"An error occurred while generating image for {prompt_name}: {e}")
|
| 33 |
+
return None
|
| 34 |
|
| 35 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
| 36 |
"""
|
| 37 |
+
Generates images for all provided prompts in parallel using asyncio.
|
| 38 |
Parameters:
|
| 39 |
- sentence_mapping (dict): Mapping between paragraph numbers and sentences.
|
| 40 |
- character_dict (dict): Dictionary mapping characters to their descriptions.
|
|
|
|
| 48 |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
| 49 |
prompts.append((paragraph_number, prompt))
|
| 50 |
|
| 51 |
+
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
| 52 |
+
responses = await asyncio.gather(*tasks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
|
| 55 |
return images
|
|
|
|
| 77 |
fn=process_prompt,
|
| 78 |
inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")],
|
| 79 |
outputs="json"
|
| 80 |
+
).queue(default_concurrency_limit=20) # Set concurrency limit if needed
|
| 81 |
|
| 82 |
if __name__ == "__main__":
|
| 83 |
gradio_interface.launch()
|