Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,11 @@ import asyncio
|
|
3 |
from generate_prompts import generate_prompt
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
6 |
-
import json
|
7 |
import gradio as gr
|
8 |
|
9 |
# Load the model once outside of the function
|
10 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
11 |
|
12 |
-
|
13 |
-
prompt1 = "write a 5 paragraph explanation of how to use python async and await. Return a JSON structure as follows {'prompt_name': 'prompt1','response': '[response]'}"
|
14 |
-
prompt2 = "write a 5 paragraph explanation of limitations for using asyncio.run(). Return a JSON structure as follows {'prompt_name': 'prompt2','response': '[response}'}"
|
15 |
-
prompt3 = "write a 5 paragraph explanation of how to use asyncio.get_running_loop(). Return a JSON structure as follows {'prompt_name': 'prompt3','response': '[response]'}"
|
16 |
-
prompt4 = "write a 5 paragraph explanation of how to use asyncio.gather(). Return a JSON structure as follows {'prompt_name': 'prompt4','response': '[response]'}"
|
17 |
-
|
18 |
async def generate_image(prompt, prompt_name):
|
19 |
try:
|
20 |
print(f"Generating response for {prompt_name}")
|
@@ -41,52 +34,44 @@ async def generate_image(prompt, prompt_name):
|
|
41 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
42 |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
|
43 |
prompts = []
|
44 |
-
|
45 |
# Generate prompts for each paragraph
|
46 |
for paragraph_number, sentences in sentence_mapping.items():
|
47 |
combined_sentence = " ".join(sentences)
|
48 |
prompt = generate_prompt(combined_sentence, character_dict, selected_style)
|
49 |
prompts.append((paragraph_number, prompt))
|
50 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
51 |
-
|
|
|
52 |
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
53 |
-
responses = await asyncio.gather(
|
54 |
|
55 |
-
|
56 |
-
images = {}
|
57 |
-
|
58 |
-
# Iterate through each response
|
59 |
-
# Map results back to paragraphs
|
60 |
-
for i, (paragraph_number, _) in enumerate(prompts):
|
61 |
-
if i < len(results):
|
62 |
-
images[paragraph_number] = results[i]
|
63 |
-
else:
|
64 |
-
print(f"Error: No result for paragraph {paragraph_number}")
|
65 |
-
|
66 |
return images
|
67 |
|
68 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
69 |
try:
|
70 |
-
#
|
71 |
loop = asyncio.get_running_loop()
|
72 |
except RuntimeError:
|
73 |
# Create new event loop if one is not running
|
74 |
loop = asyncio.new_event_loop()
|
75 |
asyncio.set_event_loop(loop)
|
76 |
|
77 |
-
#
|
78 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
79 |
return cmpt_return
|
80 |
|
81 |
# Gradio interface with high concurrency limit
|
82 |
gradio_interface = gr.Interface(
|
83 |
-
|
84 |
inputs=[
|
85 |
gr.JSON(label="Sentence Mapping"),
|
86 |
gr.JSON(label="Character Dict"),
|
87 |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
88 |
],
|
89 |
-
outputs="json"
|
90 |
-
|
|
|
91 |
if __name__ == "__main__":
|
92 |
-
|
|
|
3 |
from generate_prompts import generate_prompt
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
|
|
6 |
import gradio as gr
|
7 |
|
8 |
# Load the model once outside of the function
|
9 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
async def generate_image(prompt, prompt_name):
|
12 |
try:
|
13 |
print(f"Generating response for {prompt_name}")
|
|
|
34 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
35 |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
|
36 |
prompts = []
|
37 |
+
|
38 |
# Generate prompts for each paragraph
|
39 |
for paragraph_number, sentences in sentence_mapping.items():
|
40 |
combined_sentence = " ".join(sentences)
|
41 |
prompt = generate_prompt(combined_sentence, character_dict, selected_style)
|
42 |
prompts.append((paragraph_number, prompt))
|
43 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
44 |
+
|
45 |
+
# Generate images for each prompt in parallel
|
46 |
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
47 |
+
responses = await asyncio.gather(*tasks)
|
48 |
|
49 |
+
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
return images
|
51 |
|
52 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
53 |
try:
|
54 |
+
# See if there is a loop already running. If there is, reuse it.
|
55 |
loop = asyncio.get_running_loop()
|
56 |
except RuntimeError:
|
57 |
# Create new event loop if one is not running
|
58 |
loop = asyncio.new_event_loop()
|
59 |
asyncio.set_event_loop(loop)
|
60 |
|
61 |
+
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
|
62 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
63 |
return cmpt_return
|
64 |
|
65 |
# Gradio interface with high concurrency limit
|
66 |
gradio_interface = gr.Interface(
|
67 |
+
fn=process_prompt,
|
68 |
inputs=[
|
69 |
gr.JSON(label="Sentence Mapping"),
|
70 |
gr.JSON(label="Character Dict"),
|
71 |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
72 |
],
|
73 |
+
outputs="json"
|
74 |
+
)
|
75 |
+
|
76 |
if __name__ == "__main__":
|
77 |
+
gradio_interface.launch()
|