RanM commited on
Commit
33d78b0
·
verified ·
1 Parent(s): d353873

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -6
app.py CHANGED
@@ -1,14 +1,15 @@
1
  import os
2
  import asyncio
 
3
  from io import BytesIO
4
  from diffusers import AutoPipelineForText2Image
5
  import gradio as gr
6
  from generate_prompts import generate_prompt
7
 
8
- # Initialize model
9
  model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
10
 
11
- async def generate_image(prompt, prompt_name):
12
  """
13
  Generates an image based on the provided prompt.
14
  Parameters:
@@ -19,7 +20,7 @@ async def generate_image(prompt, prompt_name):
19
  """
20
  try:
21
  print(f"Generating image for {prompt_name}")
22
- output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
23
  if isinstance(output.images, list) and len(output.images) > 0:
24
  image = output.images[0]
25
  buffered = BytesIO()
@@ -34,7 +35,7 @@ async def generate_image(prompt, prompt_name):
34
 
35
  async def queue_api_calls(sentence_mapping, character_dict, selected_style):
36
  """
37
- Generates images for all provided prompts in parallel using asyncio.
38
  Parameters:
39
  - sentence_mapping (dict): Mapping between paragraph numbers and sentences.
40
  - character_dict (dict): Dictionary mapping characters to their descriptions.
@@ -48,8 +49,13 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
48
  prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
49
  prompts.append((paragraph_number, prompt))
50
 
51
- tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
52
- responses = await asyncio.gather(*tasks)
 
 
 
 
 
53
 
54
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
55
  return images
 
1
  import os
2
  import asyncio
3
+ import concurrent.futures
4
  from io import BytesIO
5
  from diffusers import AutoPipelineForText2Image
6
  import gradio as gr
7
  from generate_prompts import generate_prompt
8
 
9
+ # Initialize model globally
10
  model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
11
 
12
+ def generate_image(prompt, prompt_name):
13
  """
14
  Generates an image based on the provided prompt.
15
  Parameters:
 
20
  """
21
  try:
22
  print(f"Generating image for {prompt_name}")
23
+ output = model(prompt=prompt, num_inference_steps=50, guidance_scale=7.5)
24
  if isinstance(output.images, list) and len(output.images) > 0:
25
  image = output.images[0]
26
  buffered = BytesIO()
 
35
 
36
  async def queue_api_calls(sentence_mapping, character_dict, selected_style):
37
  """
38
+ Generates images for all provided prompts in parallel using ProcessPoolExecutor.
39
  Parameters:
40
  - sentence_mapping (dict): Mapping between paragraph numbers and sentences.
41
  - character_dict (dict): Dictionary mapping characters to their descriptions.
 
49
  prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
50
  prompts.append((paragraph_number, prompt))
51
 
52
+ loop = asyncio.get_running_loop()
53
+ with concurrent.futures.ProcessPoolExecutor() as pool:
54
+ tasks = [
55
+ loop.run_in_executor(pool, generate_image, prompt, f"Prompt {paragraph_number}")
56
+ for paragraph_number, prompt in prompts
57
+ ]
58
+ responses = await asyncio.gather(*tasks)
59
 
60
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
61
  return images