Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,24 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
from generate_prompts import generate_prompt
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
try:
|
10 |
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
11 |
-
# Load the model instance for each prompt
|
12 |
-
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
13 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
14 |
print(f"Output for {prompt_name}: {output}")
|
15 |
|
@@ -21,21 +30,20 @@ async def generate_image(prompt, prompt_name):
|
|
21 |
image.save(buffered, format="JPEG")
|
22 |
image_bytes = buffered.getvalue()
|
23 |
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
|
24 |
-
return image_bytes
|
25 |
except Exception as e:
|
26 |
print(f"Error saving image for {prompt_name}: {e}")
|
27 |
-
return None
|
28 |
else:
|
29 |
raise Exception(f"No images returned by the model for {prompt_name}.")
|
30 |
except Exception as e:
|
31 |
print(f"Error generating image for {prompt_name}: {e}")
|
32 |
-
return None
|
33 |
|
34 |
-
|
35 |
-
print(f"
|
|
|
36 |
prompts = []
|
37 |
-
|
38 |
-
# Generate prompts for each paragraph
|
39 |
for paragraph_number, sentences in sentence_mapping.items():
|
40 |
combined_sentence = " ".join(sentences)
|
41 |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
@@ -43,33 +51,27 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
|
43 |
prompts.append((paragraph_number, prompt))
|
44 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
|
52 |
-
images = {
|
53 |
print(f"Images generated: {images}")
|
54 |
return images
|
55 |
|
56 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
57 |
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
asyncio.set_event_loop(loop)
|
65 |
-
print("Event loop created.")
|
66 |
-
|
67 |
-
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
|
68 |
-
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
69 |
-
print(f"process_prompt completed with return value: {cmpt_return}")
|
70 |
-
return cmpt_return
|
71 |
|
72 |
-
# Gradio interface with high concurrency limit
|
73 |
gradio_interface = gr.Interface(
|
74 |
fn=process_prompt,
|
75 |
inputs=[
|
|
|
1 |
import os
|
2 |
+
import multiprocessing
|
3 |
from generate_prompts import generate_prompt
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
6 |
import gradio as gr
|
7 |
+
import json
|
8 |
|
9 |
+
# Define a global variable to hold the model
|
10 |
+
model = None
|
11 |
+
|
12 |
+
def initialize_model():
|
13 |
+
global model
|
14 |
+
if model is None: # Ensure the model is loaded only once per process
|
15 |
+
print("Loading the model...")
|
16 |
+
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
17 |
+
print("Model loaded successfully.")
|
18 |
+
|
19 |
+
def generate_image(prompt, prompt_name):
|
20 |
try:
|
21 |
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
|
|
|
|
22 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
23 |
print(f"Output for {prompt_name}: {output}")
|
24 |
|
|
|
30 |
image.save(buffered, format="JPEG")
|
31 |
image_bytes = buffered.getvalue()
|
32 |
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
|
33 |
+
return prompt_name, image_bytes
|
34 |
except Exception as e:
|
35 |
print(f"Error saving image for {prompt_name}: {e}")
|
36 |
+
return prompt_name, None
|
37 |
else:
|
38 |
raise Exception(f"No images returned by the model for {prompt_name}.")
|
39 |
except Exception as e:
|
40 |
print(f"Error generating image for {prompt_name}: {e}")
|
41 |
+
return prompt_name, None
|
42 |
|
43 |
+
def process_prompts(sentence_mapping, character_dict, selected_style):
|
44 |
+
print(f"process_prompts called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
45 |
+
|
46 |
prompts = []
|
|
|
|
|
47 |
for paragraph_number, sentences in sentence_mapping.items():
|
48 |
combined_sentence = " ".join(sentences)
|
49 |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
|
|
51 |
prompts.append((paragraph_number, prompt))
|
52 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
53 |
|
54 |
+
num_prompts = len(prompts)
|
55 |
+
print(f"Number of prompts: {num_prompts}")
|
56 |
+
|
57 |
+
# Limit the number of worker processes to the number of prompts
|
58 |
+
with multiprocessing.Pool(processes=num_prompts, initializer=initialize_model) as pool:
|
59 |
+
tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
60 |
+
results = pool.starmap(generate_image, tasks)
|
61 |
|
62 |
+
images = {prompt_name: image for prompt_name, image in results}
|
63 |
print(f"Images generated: {images}")
|
64 |
return images
|
65 |
|
66 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
67 |
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
68 |
+
# Check if inputs are already in dict form
|
69 |
+
if isinstance(sentence_mapping, str):
|
70 |
+
sentence_mapping = json.loads(sentence_mapping)
|
71 |
+
if isinstance(character_dict, str):
|
72 |
+
character_dict = json.loads(character_dict)
|
73 |
+
return process_prompts(sentence_mapping, character_dict, selected_style)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
|
|
75 |
gradio_interface = gr.Interface(
|
76 |
fn=process_prompt,
|
77 |
inputs=[
|