RanM commited on
Commit
86743ba
·
verified ·
1 Parent(s): e284958

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -31
app.py CHANGED
@@ -1,15 +1,24 @@
1
  import os
2
- import asyncio
3
  from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
 
7
 
8
- async def generate_image(prompt, prompt_name):
 
 
 
 
 
 
 
 
 
 
9
  try:
10
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
11
- # Load the model instance for each prompt
12
- model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
13
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
14
  print(f"Output for {prompt_name}: {output}")
15
 
@@ -21,21 +30,20 @@ async def generate_image(prompt, prompt_name):
21
  image.save(buffered, format="JPEG")
22
  image_bytes = buffered.getvalue()
23
  print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
24
- return image_bytes
25
  except Exception as e:
26
  print(f"Error saving image for {prompt_name}: {e}")
27
- return None
28
  else:
29
  raise Exception(f"No images returned by the model for {prompt_name}.")
30
  except Exception as e:
31
  print(f"Error generating image for {prompt_name}: {e}")
32
- return None
33
 
34
- async def queue_api_calls(sentence_mapping, character_dict, selected_style):
35
- print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
 
36
  prompts = []
37
-
38
- # Generate prompts for each paragraph
39
  for paragraph_number, sentences in sentence_mapping.items():
40
  combined_sentence = " ".join(sentences)
41
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
@@ -43,33 +51,27 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
43
  prompts.append((paragraph_number, prompt))
44
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
45
 
46
- # Generate images for each prompt in parallel
47
- tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
48
- print("Tasks created for image generation.")
49
- responses = await asyncio.gather(*tasks)
50
- print("Responses received from image generation tasks.")
 
 
51
 
52
- images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
53
  print(f"Images generated: {images}")
54
  return images
55
 
56
  def process_prompt(sentence_mapping, character_dict, selected_style):
57
  print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
58
- try:
59
- # See if there is a loop already running. If there is, reuse it.
60
- loop = asyncio.get_running_loop()
61
- except RuntimeError:
62
- # Create new event loop if one is not running
63
- loop = asyncio.new_event_loop()
64
- asyncio.set_event_loop(loop)
65
- print("Event loop created.")
66
-
67
- # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
68
- cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
69
- print(f"process_prompt completed with return value: {cmpt_return}")
70
- return cmpt_return
71
 
72
- # Gradio interface with high concurrency limit
73
  gradio_interface = gr.Interface(
74
  fn=process_prompt,
75
  inputs=[
 
1
  import os
2
+ import multiprocessing
3
  from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
+ import json
8
 
9
+ # Define a global variable to hold the model
10
+ model = None
11
+
12
+ def initialize_model():
13
+ global model
14
+ if model is None: # Ensure the model is loaded only once per process
15
+ print("Loading the model...")
16
+ model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
17
+ print("Model loaded successfully.")
18
+
19
+ def generate_image(prompt, prompt_name):
20
  try:
21
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
 
 
22
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
23
  print(f"Output for {prompt_name}: {output}")
24
 
 
30
  image.save(buffered, format="JPEG")
31
  image_bytes = buffered.getvalue()
32
  print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
33
+ return prompt_name, image_bytes
34
  except Exception as e:
35
  print(f"Error saving image for {prompt_name}: {e}")
36
+ return prompt_name, None
37
  else:
38
  raise Exception(f"No images returned by the model for {prompt_name}.")
39
  except Exception as e:
40
  print(f"Error generating image for {prompt_name}: {e}")
41
+ return prompt_name, None
42
 
43
+ def process_prompts(sentence_mapping, character_dict, selected_style):
44
+ print(f"process_prompts called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
45
+
46
  prompts = []
 
 
47
  for paragraph_number, sentences in sentence_mapping.items():
48
  combined_sentence = " ".join(sentences)
49
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
 
51
  prompts.append((paragraph_number, prompt))
52
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
53
 
54
+ num_prompts = len(prompts)
55
+ print(f"Number of prompts: {num_prompts}")
56
+
57
+ # Limit the number of worker processes to the number of prompts
58
+ with multiprocessing.Pool(processes=num_prompts, initializer=initialize_model) as pool:
59
+ tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
60
+ results = pool.starmap(generate_image, tasks)
61
 
62
+ images = {prompt_name: image for prompt_name, image in results}
63
  print(f"Images generated: {images}")
64
  return images
65
 
66
  def process_prompt(sentence_mapping, character_dict, selected_style):
67
  print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
68
+ # Check if inputs are already in dict form
69
+ if isinstance(sentence_mapping, str):
70
+ sentence_mapping = json.loads(sentence_mapping)
71
+ if isinstance(character_dict, str):
72
+ character_dict = json.loads(character_dict)
73
+ return process_prompts(sentence_mapping, character_dict, selected_style)
 
 
 
 
 
 
 
74
 
 
75
  gradio_interface = gr.Interface(
76
  fn=process_prompt,
77
  inputs=[