File size: 13,525 Bytes
f8c68bd
 
 
2116a66
f8c68bd
2116a66
41cbe95
f8c68bd
2116a66
 
2ae2cbd
 
 
 
 
f8c68bd
2ae2cbd
 
 
 
 
 
f8c68bd
 
 
 
 
 
2116a66
2ae2cbd
 
 
2116a66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c68bd
05e9cff
f8c68bd
 
 
 
 
 
 
 
05e9cff
f8c68bd
 
 
41cbe95
2ae2cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41cbe95
2ae2cbd
 
 
41cbe95
2ae2cbd
 
 
 
 
 
 
 
 
 
 
 
 
41cbe95
2ae2cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41cbe95
8b884e6
2ae2cbd
 
 
 
 
 
 
 
 
05e9cff
2ae2cbd
 
 
 
 
 
 
41cbe95
2ae2cbd
41cbe95
2ae2cbd
 
 
 
 
 
05e9cff
2ae2cbd
 
05e9cff
2ae2cbd
 
05e9cff
2ae2cbd
 
 
 
 
 
 
05e9cff
2ae2cbd
 
 
 
 
 
 
 
f8c68bd
05e9cff
2ae2cbd
 
 
 
 
 
 
 
 
 
 
 
05e9cff
2ae2cbd
f8c68bd
2ae2cbd
 
68d5b48
2ae2cbd
 
1f0eeb1
2ae2cbd
 
79cd26d
2ae2cbd
 
 
68d5b48
2ae2cbd
 
 
 
 
41cbe95
2ae2cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41cbe95
2ae2cbd
68d5b48
 
2ae2cbd
68d5b48
 
f8c68bd
8b884e6
c0cb430
6d21ad0
8b884e6
bf81dde
 
 
79cd26d
bf81dde
 
 
 
 
 
a2718c9
68d5b48
8e0a53d
 
 
5f80dfa
79cd26d
a2718c9
79cd26d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Dense, Dropout, Flatten, BatchNormalization
from tensorflow.keras.models import Model

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

import pandas as pd
import random
import cv2

from PIL import Image
import gdown
import zipfile

import pathlib

# Ensure that these imports are at the beginning of your script to avoid any NameError issues.


# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'

# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'

# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'

# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)

# Directory to extract files
extracted_path = 'extracted_files'

# Verify if the downloaded file is a ZIP file and extract it
try:
    with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
        zip_ref.extractall(extracted_path)
    print("Extraction successful!")
except zipfile.BadZipFile:
    print("Error: The downloaded file is not a valid ZIP file.")

# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)

# Convert the extracted directory path to a pathlib.Path object
data_dir = pathlib.Path(extracted_path)

# Print the directory structure to debug
for root, dirs, files in os.walk(extracted_path):
    level = root.replace(extracted_path, '').count(os.sep)
    indent = ' ' * 4 * (level)
    print(f"{indent}{os.path.basename(root)}/")
    subindent = ' ' * 4 * (level + 1)
    for f in files:
        print(f"{subindent}{f}")

# Path to the dataset directory
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
data_dir = pathlib.Path(data_dir)

# Read images and labels into a DataFrame
image_paths = list(data_dir.glob('*/*.jpg'))
image_labels = [str(path.parent.name) for path in image_paths]
image_df = pd.DataFrame({'Filepath': image_paths, 'Label': image_labels})

# Display distribution of labels
label_counts = image_df['Label'].value_counts()
plt.figure(figsize=(10, 6))
sns.barplot(x=label_counts.index, y=label_counts.values, alpha=0.8, palette='rocket')
plt.title('Distribution of Labels in Image Dataset', fontsize=16)
plt.xlabel('Label', fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.xticks(rotation=45)
plt.show()

# Display 16 pictures of the dataset with their labels
random_index = np.random.randint(0, len(image_df), 16)
fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),
                         subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
    ax.imshow(plt.imread(image_df.Filepath[random_index[i]]))
    ax.set_title(image_df.Label[random_index[i]])
plt.tight_layout()
plt.show()

# Function to return a random image path from a given directory
def random_sample(directory):
    images = [os.path.join(directory, img) for img in os.listdir(directory) if img.endswith(('.jpg', '.jpeg', '.png'))]
    return random.choice(images)

# Function to compute the Error Level Analysis (ELA) of an image
def compute_ela_cv(path, quality):
    temp_filename = 'temp.jpg'
    orig = cv2.imread(path)
    cv2.imwrite(temp_filename, orig, [int(cv2.IMWRITE_JPEG_QUALITY), quality])
    compressed = cv2.imread(temp_filename)
    ela_image = cv2.absdiff(orig, compressed)
    ela_image = np.clip(ela_image * 10, 0, 255).astype(np.uint8)
    return ela_image

# View random sample from the dataset
p = random_sample('extracted_files/Pest_Dataset/beetle')
orig = cv2.imread(p)
orig = cv2.cvtColor(orig, cv2.COLOR_BGR2RGB) / 255.0
init_val = 100
columns = 3
rows = 3

fig = plt.figure(figsize=(15, 10))
for i in range(1, columns*rows + 1):
    quality = init_val - (i-1) * 8
    img = compute_ela_cv(path=p, quality=quality)
    if i == 1:
        img = orig.copy()
    ax = fig.add_subplot(rows, columns, i)
    ax.title.set_text(f'q: {quality}')
    plt.imshow(img)
plt.show()

# Read images and labels into a DataFrame
image_paths = list(data_dir.glob('*/*.jpg'))
image_labels = [str(path.parent.name) for path in image_paths]
image_df = pd.DataFrame({'Filepath': [str(path) for path in image_paths], 'Label': image_labels})

# Separate into train and test data
train_df, test_df = train_test_split(image_df, test_size=0.2, shuffle=True, random_state=42)

train_generator = ImageDataGenerator(
    preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input,
    validation_split=0.2
)

test_generator = ImageDataGenerator(
    preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input
)

# Split the data into three categories
train_images = train_generator.flow_from_dataframe(
    dataframe=train_df,
    x_col='Filepath',
    y_col='Label',
    target_size=(224, 224),
    color_mode='rgb',
    class_mode='categorical',
    batch_size=32,
    shuffle=True,
    seed=42,
    subset='training'
)

val_images = train_generator.flow_from_dataframe(
    dataframe=train_df,
    x_col='Filepath',
    y_col='Label',
    target_size=(224, 224),
    color_mode='rgb',
    class_mode='categorical',
    batch_size=32,
    shuffle=True,
    seed=42,
    subset='validation'
)

test_images = test_generator.flow_from_dataframe(
    dataframe=test_df,
    x_col='Filepath',
    y_col='Label',
    target_size=(224, 224),
    color_mode='rgb',
    class_mode='categorical',
    batch_size=32,
    shuffle=False
)


# Data Augmentation Step
augment = tf.keras.Sequential([
    layers.experimental.preprocessing.Resizing(224, 224),
    layers.experimental.preprocessing.Rescaling(1./255),
    layers.experimental.preprocessing.RandomFlip("horizontal"),
    layers.experimental.preprocessing.RandomRotation(0.1),
    layers.experimental.preprocessing.RandomZoom(0.1),
    layers.experimental.preprocessing.RandomContrast(0.1),
])

# Load the pretrained model
pretrained_model = tf.keras.applications.efficientnet_v2.EfficientNetV2L(
    input_shape=(224, 224, 3),
    include_top=False,
    weights='imagenet',
    pooling='max'
)

pretrained_model.trainable = False

# Create checkpoint callback
checkpoint_path = "pests_cats_classification_model_checkpoint"
checkpoint_callback = ModelCheckpoint(checkpoint_path,
                                      save_weights_only=True,
                                      monitor="val_accuracy",
                                      save_best_only=True)

# Setup EarlyStopping callback to stop training if model's val_loss doesn't improve for 5 epochs
early_stopping = EarlyStopping(monitor="val_loss", patience=5, restore_best_weights=True)

inputs = pretrained_model.input
x = augment(inputs)

# Add new classification layers
x = Flatten()(pretrained_model.output)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x = BatchNormalization()(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)

outputs = Dense(12, activation='softmax')(x)

model = Model(inputs=inputs, outputs=outputs)

model.compile(
    optimizer=Adam(0.00001),
    loss='categorical_crossentropy',
    metrics=['accuracy']
)

# Train the model
history = model.fit(
    train_images,
    steps_per_epoch=len(train_images),
    validation_data=val_images,
    validation_steps=len(val_images),
    epochs=20,  # Change epochs to 20
    callbacks=[
        early_stopping,
        checkpoint_callback,
    ]
)

results = model.evaluate(test_images, verbose=0)

print("    Test Loss: {:.5f}".format(results[0]))
print("Test Accuracy: {:.2f}%".format(results[1] * 100))

accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(accuracy))
plt.plot(epochs, accuracy, 'b', label='Training accuracy')
plt.plot(epochs, val_accuracy, 'r', label='Validation accuracy')

plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')

plt.title('Training and validation loss')
plt.legend()
plt.show()

# Predict the label of the test_images
pred = model.predict(test_images)
pred = np.argmax(pred, axis=1)

# Map the label
labels = (train_images.class_indices)
labels = dict((v, k) for k, v in labels.items())
pred = [labels[k] for k in pred]

# Display the result
print(f'The first 5 predictions: {pred[:5]}')

# Display 25 random pictures from the dataset with their labels
random_index = np.random.randint(0, len(test_df) - 1, 15)
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(25, 15),
                         subplot_kw={'xticks': [], 'yticks': []})

for i, ax in enumerate(axes.flat):
    ax.imshow(plt.imread(test_df.Filepath.iloc[random_index[i]]))
    if test_df.Label.iloc[random_index[i]] == pred[random_index[i]]:
        color = "green"
    else:
        color = "red"
    ax.set_title(f"True: {test_df.Label.iloc[random_index[i]]}\nPredicted: {pred[random_index[i]]}", color=color)
plt.show()
plt.tight_layout()

y_test = list(test_df.Label)
print(classification_report(y_test, pred))

report = classification_report(y_test, pred, output_dict=True)
df = pd.DataFrame(report).transpose()
df

# Define function to get image array
def get_img_array(img_path, size):
    img = tf.keras.preprocessing.image.load_img(img_path, target_size=size)
    array = tf.keras.preprocessing.image.img_to_array(img)
    array = np.expand_dims(array, axis=0)
    return array

# Define function to make Grad-CAM heatmap
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, classifier_layer_names=None):
    grad_model = tf.keras.models.Model(
        [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
    )

    with tf.GradientTape() as tape:
        conv_outputs, predictions = grad_model(img_array)
        loss = predictions[:, np.argmax(predictions[0])]

    output = conv_outputs[0]
    grads = tape.gradient(loss, conv_outputs)[0]

    gate_f = tf.cast(output > 0, "float32")
    gate_r = tf.cast(grads > 0, "float32")
    guided_grads = grads * gate_f * gate_r

    weights = tf.reduce_mean(guided_grads, axis=(0, 1))

    cam = np.zeros(output.shape[0:2], dtype=np.float32)

    for i, w in enumerate(weights):
        cam += w * output[:, :, i]

    cam = cv2.resize(cam.numpy(), (img_array.shape[2], img_array.shape[1]))
    cam = np.maximum(cam, 0)
    heatmap = cam / cam.max()

    return heatmap

# Define function to save and display Grad-CAM
def save_and_display_gradcam(img_path, heatmap, cam_path="cam.jpg", alpha=0.4):
    img = tf.keras.preprocessing.image.load_img(img_path)
    img = tf.keras.preprocessing.image.img_to_array(img)

    heatmap = np.uint8(255 * heatmap)

    jet = cm.get_cmap("jet")

    jet_colors = jet(np.arange(256))[:, :3]
    jet_heatmap = jet_colors[heatmap]

    jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap)
    jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
    jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap)

    superimposed_img = jet_heatmap * alpha + img
    superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img)

    superimposed_img.save(cam_path)

    return cam_path

# Display the part of the pictures used by the neural network to classify the pictures
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15, 10),
                         subplot_kw={'xticks': [], 'yticks': []})

for i, ax in enumerate(axes.flat):
    img_path = test_df.Filepath.iloc[random_index[i]]
    img_array = tf.keras.applications.efficientnet_v2.preprocess_input(get_img_array(img_path, size=(224, 224)))
    heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name="top_conv")
    cam_path = save_and_display_gradcam(img_path, heatmap)
    ax.imshow(plt.imread(cam_path))
    ax.set_title(f"True: {test_df.Label.iloc[random_index[i]]}\nPredicted: {pred[random_index[i]]}")
plt.tight_layout()
plt.show()

# Define Gradio interface
def predict_image(img):
    img = np.array(img)
    img_resized = tf.image.resize(img, (224, 224))
    img_4d = tf.expand_dims(img_resized, axis=0)
    prediction = model.predict(img_4d)[0]
    return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}

image = gr.Image()
label = gr.Label(num_top_classes=1)

# Define custom CSS for background image
custom_css = """
body {
    background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
    background-size: cover;
    background-repeat: no-repeat;
    background-attachment: fixed;
    color: white;
}
"""

gr.Interface(
    fn=predict_image,
    inputs=image,
    outputs=label,
    title="Welcome to Agricultural Pest Image Classification",
    description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
    css=custom_css
).launch(debug=True)