Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,17 +9,11 @@ from tensorflow import keras
|
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
11 |
|
12 |
-
|
13 |
from PIL import Image
|
14 |
import gdown
|
15 |
import zipfile
|
16 |
-
|
17 |
import pathlib
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
# Define the Google Drive shareable link
|
24 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
25 |
|
@@ -64,27 +58,20 @@ import pathlib
|
|
64 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
65 |
data_dir = pathlib.Path(data_dir)
|
66 |
|
67 |
-
|
68 |
bees = list(data_dir.glob('bees/*'))
|
69 |
print(bees[0])
|
70 |
PIL.Image.open(str(bees[0]))
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
print(bees[0])
|
75 |
-
PIL.Image.open(str(bees[0]))
|
76 |
-
|
77 |
-
|
78 |
-
img_height,img_width=180,180
|
79 |
-
batch_size=32
|
80 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
81 |
data_dir,
|
82 |
validation_split=0.2,
|
83 |
subset="training",
|
84 |
seed=123,
|
85 |
image_size=(img_height, img_width),
|
86 |
-
batch_size=batch_size
|
87 |
-
|
88 |
|
89 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
90 |
data_dir,
|
@@ -92,15 +79,12 @@ val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
|
92 |
subset="validation",
|
93 |
seed=123,
|
94 |
image_size=(img_height, img_width),
|
95 |
-
batch_size=batch_size
|
96 |
-
|
97 |
|
98 |
class_names = train_ds.class_names
|
99 |
print(class_names)
|
100 |
|
101 |
-
|
102 |
-
import matplotlib.pyplot as plt
|
103 |
-
|
104 |
plt.figure(figsize=(10, 10))
|
105 |
for images, labels in train_ds.take(1):
|
106 |
for i in range(9):
|
@@ -109,7 +93,6 @@ for images, labels in train_ds.take(1):
|
|
109 |
plt.title(class_names[labels[i]])
|
110 |
plt.axis("off")
|
111 |
|
112 |
-
|
113 |
data_augmentation = keras.Sequential(
|
114 |
[
|
115 |
layers.RandomFlip("horizontal",
|
@@ -118,10 +101,11 @@ data_augmentation = keras.Sequential(
|
|
118 |
3)),
|
119 |
layers.RandomRotation(0.1),
|
120 |
layers.RandomZoom(0.1),
|
|
|
|
|
121 |
]
|
122 |
)
|
123 |
|
124 |
-
|
125 |
plt.figure(figsize=(10, 10))
|
126 |
for images, _ in train_ds.take(1):
|
127 |
for i in range(9):
|
@@ -130,39 +114,43 @@ for images, _ in train_ds.take(1):
|
|
130 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
131 |
plt.axis("off")
|
132 |
|
133 |
-
|
134 |
num_classes = len(class_names)
|
135 |
model = Sequential([
|
136 |
data_augmentation,
|
137 |
layers.Rescaling(1./255),
|
138 |
-
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
139 |
-
layers.MaxPooling2D(),
|
140 |
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
141 |
layers.MaxPooling2D(),
|
142 |
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
143 |
layers.MaxPooling2D(),
|
144 |
-
layers.
|
|
|
|
|
145 |
layers.Flatten(),
|
146 |
-
layers.Dense(
|
147 |
-
layers.
|
|
|
148 |
])
|
149 |
|
150 |
model.compile(optimizer='adam',
|
151 |
-
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
152 |
metrics=['accuracy'])
|
153 |
|
154 |
model.summary()
|
155 |
|
|
|
|
|
156 |
|
157 |
-
|
|
|
|
|
|
|
158 |
history = model.fit(
|
159 |
train_ds,
|
160 |
validation_data=val_ds,
|
161 |
-
epochs=epochs
|
|
|
162 |
)
|
163 |
|
164 |
-
|
165 |
-
|
166 |
# Define category descriptions
|
167 |
category_descriptions = {
|
168 |
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
@@ -194,6 +182,16 @@ def predict_image(img):
|
|
194 |
image = gr.Image()
|
195 |
label = gr.Label(num_top_classes=1)
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
gr.Interface(
|
199 |
fn=predict_image,
|
@@ -203,4 +201,3 @@ gr.Interface(
|
|
203 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
204 |
css=custom_css
|
205 |
).launch(debug=True)
|
206 |
-
|
|
|
9 |
from tensorflow.keras import layers
|
10 |
from tensorflow.keras.models import Sequential
|
11 |
|
|
|
12 |
from PIL import Image
|
13 |
import gdown
|
14 |
import zipfile
|
|
|
15 |
import pathlib
|
16 |
|
|
|
|
|
|
|
|
|
17 |
# Define the Google Drive shareable link
|
18 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
19 |
|
|
|
58 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
59 |
data_dir = pathlib.Path(data_dir)
|
60 |
|
|
|
61 |
bees = list(data_dir.glob('bees/*'))
|
62 |
print(bees[0])
|
63 |
PIL.Image.open(str(bees[0]))
|
64 |
|
65 |
+
img_height, img_width = 180, 180
|
66 |
+
batch_size = 32
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
68 |
data_dir,
|
69 |
validation_split=0.2,
|
70 |
subset="training",
|
71 |
seed=123,
|
72 |
image_size=(img_height, img_width),
|
73 |
+
batch_size=batch_size
|
74 |
+
)
|
75 |
|
76 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
77 |
data_dir,
|
|
|
79 |
subset="validation",
|
80 |
seed=123,
|
81 |
image_size=(img_height, img_width),
|
82 |
+
batch_size=batch_size
|
83 |
+
)
|
84 |
|
85 |
class_names = train_ds.class_names
|
86 |
print(class_names)
|
87 |
|
|
|
|
|
|
|
88 |
plt.figure(figsize=(10, 10))
|
89 |
for images, labels in train_ds.take(1):
|
90 |
for i in range(9):
|
|
|
93 |
plt.title(class_names[labels[i]])
|
94 |
plt.axis("off")
|
95 |
|
|
|
96 |
data_augmentation = keras.Sequential(
|
97 |
[
|
98 |
layers.RandomFlip("horizontal",
|
|
|
101 |
3)),
|
102 |
layers.RandomRotation(0.1),
|
103 |
layers.RandomZoom(0.1),
|
104 |
+
layers.RandomContrast(0.1),
|
105 |
+
layers.RandomBrightness(0.1)
|
106 |
]
|
107 |
)
|
108 |
|
|
|
109 |
plt.figure(figsize=(10, 10))
|
110 |
for images, _ in train_ds.take(1):
|
111 |
for i in range(9):
|
|
|
114 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
115 |
plt.axis("off")
|
116 |
|
|
|
117 |
num_classes = len(class_names)
|
118 |
model = Sequential([
|
119 |
data_augmentation,
|
120 |
layers.Rescaling(1./255),
|
|
|
|
|
121 |
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
122 |
layers.MaxPooling2D(),
|
123 |
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
124 |
layers.MaxPooling2D(),
|
125 |
+
layers.Conv2D(128, 3, padding='same', activation='relu'),
|
126 |
+
layers.MaxPooling2D(),
|
127 |
+
layers.Dropout(0.5),
|
128 |
layers.Flatten(),
|
129 |
+
layers.Dense(256, activation='relu'),
|
130 |
+
layers.Dropout(0.5),
|
131 |
+
layers.Dense(num_classes, activation='softmax', name="outputs")
|
132 |
])
|
133 |
|
134 |
model.compile(optimizer='adam',
|
135 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
136 |
metrics=['accuracy'])
|
137 |
|
138 |
model.summary()
|
139 |
|
140 |
+
# Learning rate scheduler
|
141 |
+
lr_scheduler = keras.callbacks.LearningRateScheduler(lambda epoch: 1e-3 * 10**(epoch / 20))
|
142 |
|
143 |
+
# Early stopping
|
144 |
+
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
145 |
+
|
146 |
+
epochs = 20
|
147 |
history = model.fit(
|
148 |
train_ds,
|
149 |
validation_data=val_ds,
|
150 |
+
epochs=epochs,
|
151 |
+
callbacks=[lr_scheduler, early_stopping]
|
152 |
)
|
153 |
|
|
|
|
|
154 |
# Define category descriptions
|
155 |
category_descriptions = {
|
156 |
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
|
|
182 |
image = gr.Image()
|
183 |
label = gr.Label(num_top_classes=1)
|
184 |
|
185 |
+
# Define custom CSS for background image
|
186 |
+
custom_css = """
|
187 |
+
body {
|
188 |
+
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
|
189 |
+
background-size: cover;
|
190 |
+
background-repeat: no-repeat;
|
191 |
+
background-attachment: fixed;
|
192 |
+
color: white;
|
193 |
+
}
|
194 |
+
"""
|
195 |
|
196 |
gr.Interface(
|
197 |
fn=predict_image,
|
|
|
201 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
202 |
css=custom_css
|
203 |
).launch(debug=True)
|
|