Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,17 +9,11 @@ from tensorflow import keras
|
|
| 9 |
from tensorflow.keras import layers
|
| 10 |
from tensorflow.keras.models import Sequential
|
| 11 |
|
| 12 |
-
|
| 13 |
from PIL import Image
|
| 14 |
import gdown
|
| 15 |
import zipfile
|
| 16 |
-
|
| 17 |
import pathlib
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
# Define the Google Drive shareable link
|
| 24 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 25 |
|
|
@@ -64,27 +58,20 @@ import pathlib
|
|
| 64 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 65 |
data_dir = pathlib.Path(data_dir)
|
| 66 |
|
| 67 |
-
|
| 68 |
bees = list(data_dir.glob('bees/*'))
|
| 69 |
print(bees[0])
|
| 70 |
PIL.Image.open(str(bees[0]))
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
print(bees[0])
|
| 75 |
-
PIL.Image.open(str(bees[0]))
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
img_height,img_width=180,180
|
| 79 |
-
batch_size=32
|
| 80 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 81 |
data_dir,
|
| 82 |
validation_split=0.2,
|
| 83 |
subset="training",
|
| 84 |
seed=123,
|
| 85 |
image_size=(img_height, img_width),
|
| 86 |
-
batch_size=batch_size
|
| 87 |
-
|
| 88 |
|
| 89 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 90 |
data_dir,
|
|
@@ -92,15 +79,12 @@ val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
|
| 92 |
subset="validation",
|
| 93 |
seed=123,
|
| 94 |
image_size=(img_height, img_width),
|
| 95 |
-
batch_size=batch_size
|
| 96 |
-
|
| 97 |
|
| 98 |
class_names = train_ds.class_names
|
| 99 |
print(class_names)
|
| 100 |
|
| 101 |
-
|
| 102 |
-
import matplotlib.pyplot as plt
|
| 103 |
-
|
| 104 |
plt.figure(figsize=(10, 10))
|
| 105 |
for images, labels in train_ds.take(1):
|
| 106 |
for i in range(9):
|
|
@@ -109,7 +93,6 @@ for images, labels in train_ds.take(1):
|
|
| 109 |
plt.title(class_names[labels[i]])
|
| 110 |
plt.axis("off")
|
| 111 |
|
| 112 |
-
|
| 113 |
data_augmentation = keras.Sequential(
|
| 114 |
[
|
| 115 |
layers.RandomFlip("horizontal",
|
|
@@ -118,10 +101,11 @@ data_augmentation = keras.Sequential(
|
|
| 118 |
3)),
|
| 119 |
layers.RandomRotation(0.1),
|
| 120 |
layers.RandomZoom(0.1),
|
|
|
|
|
|
|
| 121 |
]
|
| 122 |
)
|
| 123 |
|
| 124 |
-
|
| 125 |
plt.figure(figsize=(10, 10))
|
| 126 |
for images, _ in train_ds.take(1):
|
| 127 |
for i in range(9):
|
|
@@ -130,39 +114,43 @@ for images, _ in train_ds.take(1):
|
|
| 130 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
| 131 |
plt.axis("off")
|
| 132 |
|
| 133 |
-
|
| 134 |
num_classes = len(class_names)
|
| 135 |
model = Sequential([
|
| 136 |
data_augmentation,
|
| 137 |
layers.Rescaling(1./255),
|
| 138 |
-
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
| 139 |
-
layers.MaxPooling2D(),
|
| 140 |
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
| 141 |
layers.MaxPooling2D(),
|
| 142 |
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
| 143 |
layers.MaxPooling2D(),
|
| 144 |
-
layers.
|
|
|
|
|
|
|
| 145 |
layers.Flatten(),
|
| 146 |
-
layers.Dense(
|
| 147 |
-
layers.
|
|
|
|
| 148 |
])
|
| 149 |
|
| 150 |
model.compile(optimizer='adam',
|
| 151 |
-
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
| 152 |
metrics=['accuracy'])
|
| 153 |
|
| 154 |
model.summary()
|
| 155 |
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
| 158 |
history = model.fit(
|
| 159 |
train_ds,
|
| 160 |
validation_data=val_ds,
|
| 161 |
-
epochs=epochs
|
|
|
|
| 162 |
)
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
# Define category descriptions
|
| 167 |
category_descriptions = {
|
| 168 |
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
|
@@ -194,6 +182,16 @@ def predict_image(img):
|
|
| 194 |
image = gr.Image()
|
| 195 |
label = gr.Label(num_top_classes=1)
|
| 196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
gr.Interface(
|
| 199 |
fn=predict_image,
|
|
@@ -203,4 +201,3 @@ gr.Interface(
|
|
| 203 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
| 204 |
css=custom_css
|
| 205 |
).launch(debug=True)
|
| 206 |
-
|
|
|
|
| 9 |
from tensorflow.keras import layers
|
| 10 |
from tensorflow.keras.models import Sequential
|
| 11 |
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
import gdown
|
| 14 |
import zipfile
|
|
|
|
| 15 |
import pathlib
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# Define the Google Drive shareable link
|
| 18 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 19 |
|
|
|
|
| 58 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 59 |
data_dir = pathlib.Path(data_dir)
|
| 60 |
|
|
|
|
| 61 |
bees = list(data_dir.glob('bees/*'))
|
| 62 |
print(bees[0])
|
| 63 |
PIL.Image.open(str(bees[0]))
|
| 64 |
|
| 65 |
+
img_height, img_width = 180, 180
|
| 66 |
+
batch_size = 32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 68 |
data_dir,
|
| 69 |
validation_split=0.2,
|
| 70 |
subset="training",
|
| 71 |
seed=123,
|
| 72 |
image_size=(img_height, img_width),
|
| 73 |
+
batch_size=batch_size
|
| 74 |
+
)
|
| 75 |
|
| 76 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 77 |
data_dir,
|
|
|
|
| 79 |
subset="validation",
|
| 80 |
seed=123,
|
| 81 |
image_size=(img_height, img_width),
|
| 82 |
+
batch_size=batch_size
|
| 83 |
+
)
|
| 84 |
|
| 85 |
class_names = train_ds.class_names
|
| 86 |
print(class_names)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
plt.figure(figsize=(10, 10))
|
| 89 |
for images, labels in train_ds.take(1):
|
| 90 |
for i in range(9):
|
|
|
|
| 93 |
plt.title(class_names[labels[i]])
|
| 94 |
plt.axis("off")
|
| 95 |
|
|
|
|
| 96 |
data_augmentation = keras.Sequential(
|
| 97 |
[
|
| 98 |
layers.RandomFlip("horizontal",
|
|
|
|
| 101 |
3)),
|
| 102 |
layers.RandomRotation(0.1),
|
| 103 |
layers.RandomZoom(0.1),
|
| 104 |
+
layers.RandomContrast(0.1),
|
| 105 |
+
layers.RandomBrightness(0.1)
|
| 106 |
]
|
| 107 |
)
|
| 108 |
|
|
|
|
| 109 |
plt.figure(figsize=(10, 10))
|
| 110 |
for images, _ in train_ds.take(1):
|
| 111 |
for i in range(9):
|
|
|
|
| 114 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
| 115 |
plt.axis("off")
|
| 116 |
|
|
|
|
| 117 |
num_classes = len(class_names)
|
| 118 |
model = Sequential([
|
| 119 |
data_augmentation,
|
| 120 |
layers.Rescaling(1./255),
|
|
|
|
|
|
|
| 121 |
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
| 122 |
layers.MaxPooling2D(),
|
| 123 |
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
| 124 |
layers.MaxPooling2D(),
|
| 125 |
+
layers.Conv2D(128, 3, padding='same', activation='relu'),
|
| 126 |
+
layers.MaxPooling2D(),
|
| 127 |
+
layers.Dropout(0.5),
|
| 128 |
layers.Flatten(),
|
| 129 |
+
layers.Dense(256, activation='relu'),
|
| 130 |
+
layers.Dropout(0.5),
|
| 131 |
+
layers.Dense(num_classes, activation='softmax', name="outputs")
|
| 132 |
])
|
| 133 |
|
| 134 |
model.compile(optimizer='adam',
|
| 135 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
| 136 |
metrics=['accuracy'])
|
| 137 |
|
| 138 |
model.summary()
|
| 139 |
|
| 140 |
+
# Learning rate scheduler
|
| 141 |
+
lr_scheduler = keras.callbacks.LearningRateScheduler(lambda epoch: 1e-3 * 10**(epoch / 20))
|
| 142 |
|
| 143 |
+
# Early stopping
|
| 144 |
+
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
| 145 |
+
|
| 146 |
+
epochs = 20
|
| 147 |
history = model.fit(
|
| 148 |
train_ds,
|
| 149 |
validation_data=val_ds,
|
| 150 |
+
epochs=epochs,
|
| 151 |
+
callbacks=[lr_scheduler, early_stopping]
|
| 152 |
)
|
| 153 |
|
|
|
|
|
|
|
| 154 |
# Define category descriptions
|
| 155 |
category_descriptions = {
|
| 156 |
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
|
|
|
| 182 |
image = gr.Image()
|
| 183 |
label = gr.Label(num_top_classes=1)
|
| 184 |
|
| 185 |
+
# Define custom CSS for background image
|
| 186 |
+
custom_css = """
|
| 187 |
+
body {
|
| 188 |
+
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
|
| 189 |
+
background-size: cover;
|
| 190 |
+
background-repeat: no-repeat;
|
| 191 |
+
background-attachment: fixed;
|
| 192 |
+
color: white;
|
| 193 |
+
}
|
| 194 |
+
"""
|
| 195 |
|
| 196 |
gr.Interface(
|
| 197 |
fn=predict_image,
|
|
|
|
| 201 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
| 202 |
css=custom_css
|
| 203 |
).launch(debug=True)
|
|
|