File size: 11,661 Bytes
cdb0b4e
88e3654
 
63c9e83
cdb0b4e
63c9e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88e3654
999146f
 
88e3654
63c9e83
 
 
1f6e19d
da5f647
 
 
 
 
 
 
 
 
1f6e19d
88e3654
 
 
948de27
81368b8
 
e4c65e7
948de27
81368b8
948de27
81368b8
 
948de27
88e3654
 
2f6e05a
88e3654
 
 
 
 
81368b8
88e3654
 
 
 
 
 
 
 
 
 
 
 
 
f8e43b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb10dbd
f8e43b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c65e7
 
 
dfb9bd5
 
 
81368b8
e41e310
63c9e83
 
 
 
e4c65e7
 
 
 
 
 
47ff1d0
 
f8e43b5
e4c65e7
 
f8e43b5
e4c65e7
88e3654
 
e4c65e7
 
 
 
 
 
 
 
fcc30c7
e4c65e7
 
fcc30c7
e4c65e7
e41e310
e4c65e7
f8e43b5
c863ca5
81368b8
e7de586
2f6e05a
e7de586
86f68fe
 
 
 
 
 
 
 
4da79e9
86f68fe
 
 
 
 
 
 
e7de586
 
 
 
 
dfb9bd5
63c9e83
 
e7de586
63c9e83
e7de586
2ccf758
 
 
 
 
63c9e83
2ccf758
8273acd
2ccf758
 
63c9e83
2ccf758
e7de586
2ccf758
 
63c9e83
2ccf758
 
 
 
 
 
 
 
e7de586
2f6e05a
88e3654
c863ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c9e83
c863ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

import os
import datasets
import tarfile

_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
_LICENSE = "CC-BY-SA 4.0"
_CITATION = """  
@article{EMTdataset2025,  
      title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},  
      author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},  
      year={2025},  
      eprint={2502.19260},  
      archivePrefix={arXiv},  
      primaryClass={cs.CV},  
      url={https://arxiv.org/abs/2502.19260}  
}  
""" 

_DESCRIPTION = """\
A multi-task dataset for detection, tracking, prediction, and intention prediction. 
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
"""

_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"

_TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
_TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"

_GT_OBJECT_CLASSES = {
    "Pedestrian": 0,
    "Cyclist"   : 1,
    "Motorbike" : 2,
    "Small_motorised_vehicle" : 3,
    "Car" : 4,
    "Medium_vehicle" : 5,
    "Large_vehicle" : 6,
    "Bus" : 7,
    "Emergency_vehicle" : 8,
}

class EMT(datasets.GeneratorBasedBuilder):
    """EMT dataset."""
    
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="emt",
            description="Training split of the EMT dataset",
            version=datasets.Version("1.0.0"),
        ),
    ]


    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "objects": datasets.Sequence(
                        {
                            "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                            "class_id": datasets.Value("int32"),
                            "track_id": datasets.Value("int32"),
                            "class_name": datasets.Value("string"),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    # def _split_generators(self, dl_manager):
    #     """Download (if not cached) and prepare dataset splits."""
        
    #     image_urls = {
    #         "train": _TRAIN_IMAGE_ARCHIVE_URL,
    #         "test": _TEST_IMAGE_ARCHIVE_URL,
    #     }
        
    #     annotation_urls = {
    #         "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
    #         "test": _TEST_ANNOTATION_ARCHIVE_URL,
    #     }
        
    #     # Ensure paths are correctly resolved for the requested split
    #     extracted_paths = dl_manager.download_and_extract(annotation_urls)
    #     image_archives = dl_manager.download_and_extract(image_urls)
        
    #     # Ensure annotation paths point to the correct subdirectory
    #     train_annotation_path = os.path.join(extracted_paths["train"], "EMT", "annotations", "train")
    #     test_annotation_path = os.path.join(extracted_paths["test"], "EMT", "annotations", "test")
        
        
    #     return [
    #         datasets.SplitGenerator(
    #             name=datasets.Split.TRAIN,
    #             gen_kwargs={
    #                 "images": dl_manager.iter_archive(image_archives["train"]),
    #                 "annotation_path": train_annotation_path,
    #             },
    #         ),
    #         datasets.SplitGenerator(
    #             name=datasets.Split.TEST,
    #             gen_kwargs={
    #                 "images": dl_manager.iter_archive(image_archives["test"]),
    #                 "annotation_path": test_annotation_path,
    #             },
    #         ),
    #     ]
    def _split_generators(self, dl_manager):
        """Download (if not cached) and prepare dataset splits."""
        
        # Define dataset URLs
        image_urls = {
            "train": _TRAIN_IMAGE_ARCHIVE_URL,
            "test": _TEST_IMAGE_ARCHIVE_URL,
        }
        
        annotation_urls = {
            "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
            "test": _TEST_ANNOTATION_ARCHIVE_URL,
        }
        
        # Extract all data (both splits)
        extracted_images = dl_manager.download_and_extract(image_urls)
        extracted_annotations = dl_manager.download_and_extract(annotation_urls)
        
        # Define paths
        train_annotation_path = os.path.join(extracted_annotations["train"],"EMT", "annotations", "train")
        test_annotation_path = os.path.join(extracted_annotations["test"],"EMT", "annotations", "test")
    
        train_image_path = extracted_images["train"]
        test_image_path = extracted_images["test"]
    
        # Return available splits (Hugging Face will filter based on user request)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "image_dir": train_image_path,
                    "annotation_path": train_annotation_path,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "image_dir": test_image_path,
                    "annotation_path": test_annotation_path,
                },
            ),
        ]

    
    def _generate_examples(self, image_dir, annotation_path):
        """Generate dataset examples by matching images to their corresponding annotations."""
    
        annotations = {}
    
        # Determine whether we're processing train or test split
        if "train" in annotation_path:
            annotation_split = "train"
        elif "test" in annotation_path:
            annotation_split = "test"
        else:
            raise ValueError(f"Unknown annotation path: {annotation_path}")
    
        ann_dir = annotation_path
    
        print(f"Extracted annotations path: {annotation_path}")
        print(f"Looking for annotations in: {ann_dir}")
    
        # Check if annotation directory exists
        if not os.path.exists(ann_dir):
            raise FileNotFoundError(f"Annotation directory does not exist: {ann_dir}")
    
        # Extract annotation files and read their contents
        for ann_file in os.listdir(ann_dir):
            video_name = os.path.splitext(ann_file)[0]  # Extract video folder name from file
            ann_path = os.path.join(ann_dir, ann_file)
            
            if os.path.isdir(ann_path):
                continue  # Skip directories
    
            print("Processing annotation file:", ann_path)
    
            with open(ann_path, "r", encoding="utf-8") as f:
                for line in f:
                    parts = line.strip().split()
                    if len(parts) < 8:
                        continue
    
                    frame_id, track_id, class_name = parts[:3]
                    bbox = list(map(float, parts[6:10]))
                    class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
                    img_name = f"{frame_id}.jpg"
    
                    # Store annotation in a dictionary
                    key = f"{video_name}/{img_name}"
                    if key not in annotations:
                        annotations[key] = []
    
                    annotations[key].append(
                        {
                            "bbox": bbox,
                            "class_id": class_id,
                            "track_id": int(track_id),
                            "class_name": class_name,
                        }
                    )
    
        # Yield dataset entries
        idx = 0
        for root, _, files in os.walk(image_dir):
            for file_name in files:
                if not file_name.endswith((".jpg", ".png")):
                    continue
    
                file_path = os.path.join(root, file_name)
                video_name = os.path.basename(root)  # Match the video folder
                key = f"{video_name}/{file_name}"
    
                if key in annotations:
                    with open(file_path, "rb") as img_file:
                        yield idx, {
                            "image": {"path": file_path, "bytes": img_file.read()},
                            "objects": annotations[key],
                        }
                        idx += 1

    # def _generate_examples(self, images, annotation_path):
    #     """Generate dataset examples by matching images to their corresponding annotations."""
    
    #     annotations = {}
    
    #     # Determine whether we're processing train or test split
    #     if "train" in annotation_path:
    #         annotation_split = "train"
    #     elif "test" in annotation_path:
    #         annotation_split = "test"
    #     else:
    #         raise ValueError(f"Unknown annotation path: {annotation_path}")
    
    #     ann_dir = annotation_path
    
    #     print(f"Extracted annotations path: {annotation_path}")
    #     print(f"Looking for annotations in: {ann_dir}")
    
    #     # Check if annotation directory exists
    #     if not os.path.exists(ann_dir):
    #         raise FileNotFoundError(f"Annotation directory does not exist: {ann_dir}")
    
    #     # Extract annotation files and read their contents
    #     for ann_file in os.listdir(ann_dir):
    #         video_name = os.path.splitext(ann_file)[0]  # Extract video folder name from file
    #         ann_path = os.path.join(ann_dir, ann_file)
            
    #         if os.path.isdir(ann_path):
    #             continue  # Skip directories
    
    #         print("Processing annotation file:", ann_path)
    
    #         with open(ann_path, "r", encoding="utf-8") as f:
    #             for line in f:
    #                 parts = line.strip().split()
    #                 if len(parts) < 8:
    #                     continue
    
    #                 frame_id, track_id, class_name = parts[:3]
    #                 bbox = list(map(float, parts[4:8]))
    #                 class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
    #                 img_name = f"{frame_id}.jpg"
    
    #                 # Store annotation in a dictionary
    #                 key = f"{video_name}/{img_name}"
    #                 if key not in annotations:
    #                     annotations[key] = []
    
    #                 annotations[key].append(
    #                     {
    #                         "bbox": bbox,
    #                         "class_id": class_id,
    #                         "track_id": int(track_id),
    #                         "class_name": class_name,
    #                     }
    #                 )
    
    #     # Yield dataset entries
    #     idx = 0
    #     for file_path, file_obj in images:
    #         img_name = os.path.basename(file_path)
    #         video_name = os.path.basename(os.path.dirname(file_path))  # Match the video folder
    #         key = f"{video_name}/{img_name}"
    
    #         if key in annotations:
    #             yield idx, {
    #                 "image": {"path": file_path, "bytes": file_obj.read()},
    #                 "objects": annotations[key],
    #             }
    #             idx += 1