Murad Mebrahtu
commited on
Commit
·
88e3654
1
Parent(s):
495e513
Added annotations
Browse files
emt.py
CHANGED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# """EMT dataset."""
|
2 |
+
|
3 |
+
# import os
|
4 |
+
# import json
|
5 |
+
|
6 |
+
# import datasets
|
7 |
+
|
8 |
+
|
9 |
+
# _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
10 |
+
|
11 |
+
# _LICENSE = "CC-BY-SA 4.0"
|
12 |
+
|
13 |
+
# _CITATION = """
|
14 |
+
# @article{EMTdataset2025,
|
15 |
+
# title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
16 |
+
# author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},
|
17 |
+
# year={2025},
|
18 |
+
# eprint={2502.19260},
|
19 |
+
# archivePrefix={arXiv},
|
20 |
+
# primaryClass={cs.CV},
|
21 |
+
# url={https://arxiv.org/abs/2502.19260}
|
22 |
+
# }
|
23 |
+
# """
|
24 |
+
|
25 |
+
# _DESCRIPTION = """\
|
26 |
+
# A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
27 |
+
# This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.",
|
28 |
+
|
29 |
+
# """
|
30 |
+
|
31 |
+
|
32 |
+
# _LABEL_MAP = [
|
33 |
+
# 'n01440764',
|
34 |
+
# 'n02102040',
|
35 |
+
# 'n02979186',
|
36 |
+
# 'n03000684',
|
37 |
+
# 'n03028079',
|
38 |
+
# 'n03394916',
|
39 |
+
# 'n03417042',
|
40 |
+
# 'n03425413',
|
41 |
+
# 'n03445777',
|
42 |
+
# 'n03888257',
|
43 |
+
# ]
|
44 |
+
|
45 |
+
# # _REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata"
|
46 |
+
# _REPO = "https://huggingface.co/datasets/Murdism/EMT/resolve/main/labels"
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
# class EMTConfig(datasets.BuilderConfig):
|
51 |
+
# """BuilderConfig for EMT."""
|
52 |
+
|
53 |
+
# def __init__(self, data_url, metadata_urls, **kwargs):
|
54 |
+
# """BuilderConfig for EMT.
|
55 |
+
# Args:
|
56 |
+
# data_url: `string`, url to download the zip file from.
|
57 |
+
# matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
|
58 |
+
# **kwargs: keyword arguments forwarded to super.
|
59 |
+
# """
|
60 |
+
# super(EMTConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
|
61 |
+
# self.data_url = data_url
|
62 |
+
# self.metadata_urls = metadata_urls
|
63 |
+
|
64 |
+
|
65 |
+
# class EMT(datasets.GeneratorBasedBuilder):
|
66 |
+
# """Imagenette dataset."""
|
67 |
+
|
68 |
+
# BUILDER_CONFIGS = [
|
69 |
+
# EMTConfig(
|
70 |
+
# name="full_size",
|
71 |
+
# description="All images are in their original size.",
|
72 |
+
# data_url="https://huggingface.co/datasets/KuAvLab/EMT/blob/main/emt_images.tar.gz",
|
73 |
+
# metadata_urls={
|
74 |
+
# "train": f"{_REPO}/train/",
|
75 |
+
# "test": f"{_REPO}/test/",
|
76 |
+
# },
|
77 |
+
# )
|
78 |
+
# ]
|
79 |
+
|
80 |
+
# def _info(self):
|
81 |
+
# return datasets.DatasetInfo(
|
82 |
+
# description=_DESCRIPTION + self.config.description,
|
83 |
+
# features=datasets.Features(
|
84 |
+
# {
|
85 |
+
# "image": datasets.Image(),
|
86 |
+
# "label": datasets.ClassLabel(
|
87 |
+
# names=[
|
88 |
+
# "bbox",
|
89 |
+
# "class_id",
|
90 |
+
# "track_id",
|
91 |
+
# "class_name",
|
92 |
+
|
93 |
+
# ]
|
94 |
+
# ),
|
95 |
+
# }
|
96 |
+
# ),
|
97 |
+
# supervised_keys=None,
|
98 |
+
# homepage=_HOMEPAGE,
|
99 |
+
# license=_LICENSE,
|
100 |
+
# citation=_CITATION,
|
101 |
+
# )
|
102 |
+
|
103 |
+
# def _split_generators(self, dl_manager):
|
104 |
+
# archive_path = dl_manager.download(self.config.data_url)
|
105 |
+
# metadata_paths = dl_manager.download(self.config.metadata_urls)
|
106 |
+
# archive_iter = dl_manager.iter_archive(archive_path)
|
107 |
+
# return [
|
108 |
+
# datasets.SplitGenerator(
|
109 |
+
# name=datasets.Split.TRAIN,
|
110 |
+
# gen_kwargs={
|
111 |
+
# "images": archive_iter,
|
112 |
+
# "metadata_path": metadata_paths["train"],
|
113 |
+
# },
|
114 |
+
# ),
|
115 |
+
# datasets.SplitGenerator(
|
116 |
+
# name=datasets.Split.TEST,
|
117 |
+
# gen_kwargs={
|
118 |
+
# "images": os.path.join(self.config.data_url, "test"),
|
119 |
+
# "metadata_path": metadata_paths["test"],
|
120 |
+
# },
|
121 |
+
# ),
|
122 |
+
# ]
|
123 |
+
|
124 |
+
# def _generate_examples(self, images, metadata_path):
|
125 |
+
# with open(metadata_path, encoding="utf-8") as f:
|
126 |
+
# files_to_keep = set(f.read().split("\n"))
|
127 |
+
# idx = 0
|
128 |
+
# for file_path, file_obj in images:
|
129 |
+
# if file_path in files_to_keep:
|
130 |
+
# label = _LABEL_MAP.index(file_path.split("/")[-2])
|
131 |
+
# yield idx, {
|
132 |
+
# "image": {"path": file_path, "bytes": file_obj.read()},
|
133 |
+
# "label": label,
|
134 |
+
# }
|
135 |
+
# idx += 1
|
136 |
+
|
137 |
+
"""EMT dataset."""
|
138 |
+
|
139 |
+
import os
|
140 |
+
import json
|
141 |
+
import pandas as pd
|
142 |
+
import datasets
|
143 |
+
|
144 |
+
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
145 |
+
_LICENSE = "CC-BY-SA 4.0"
|
146 |
+
|
147 |
+
_CITATION = """
|
148 |
+
@article{EMTdataset2025,
|
149 |
+
title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
150 |
+
author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},
|
151 |
+
year={2025},
|
152 |
+
eprint={2502.19260},
|
153 |
+
archivePrefix={arXiv},
|
154 |
+
primaryClass={cs.CV},
|
155 |
+
url={https://arxiv.org/abs/2502.19260}
|
156 |
+
}
|
157 |
+
"""
|
158 |
+
|
159 |
+
_DESCRIPTION = """\
|
160 |
+
A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
161 |
+
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.",
|
162 |
+
"""
|
163 |
+
|
164 |
+
_REPO = "https://huggingface.co/datasets/Murdism/EMT/resolve/main/annotations"
|
165 |
+
|
166 |
+
class EMTConfig(datasets.BuilderConfig):
|
167 |
+
"""BuilderConfig for EMT."""
|
168 |
+
|
169 |
+
def __init__(self, data_url, annotation_url, **kwargs):
|
170 |
+
"""BuilderConfig for EMT.
|
171 |
+
Args:
|
172 |
+
data_url: `string`, URL to download the image archive (.tar file).
|
173 |
+
annotation_url: `string`, URL to download the annotations (Parquet file).
|
174 |
+
**kwargs: keyword arguments forwarded to super.
|
175 |
+
"""
|
176 |
+
super(EMTConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
|
177 |
+
self.data_url = data_url
|
178 |
+
self.annotation_url = annotation_url
|
179 |
+
|
180 |
+
|
181 |
+
class EMT(datasets.GeneratorBasedBuilder):
|
182 |
+
"""EMT dataset."""
|
183 |
+
|
184 |
+
BUILDER_CONFIGS = [
|
185 |
+
EMTConfig(
|
186 |
+
name="full_size",
|
187 |
+
description="All images are in their original size.",
|
188 |
+
data_url="https://huggingface.co/datasets/KuAvLab/EMT/blob/main/emt_images.tar.gz",
|
189 |
+
annotation_url="https://huggingface.co/datasets/Murdism/EMT/resolve/main/annotations/",
|
190 |
+
)
|
191 |
+
]
|
192 |
+
|
193 |
+
def _info(self):
|
194 |
+
return datasets.DatasetInfo(
|
195 |
+
description=_DESCRIPTION + self.config.description,
|
196 |
+
features=datasets.Features(
|
197 |
+
{
|
198 |
+
"image": datasets.Image(),
|
199 |
+
"objects": datasets.Sequence(
|
200 |
+
{
|
201 |
+
"bbox": datasets.Sequence(datasets.Float32()),
|
202 |
+
"class_id": datasets.Value("int32"),
|
203 |
+
"track_id": datasets.Value("int32"),
|
204 |
+
"class_name": datasets.Value("string"),
|
205 |
+
}
|
206 |
+
),
|
207 |
+
}
|
208 |
+
),
|
209 |
+
supervised_keys=None,
|
210 |
+
homepage=_HOMEPAGE,
|
211 |
+
license=_LICENSE,
|
212 |
+
citation=_CITATION,
|
213 |
+
)
|
214 |
+
|
215 |
+
def _split_generators(self, dl_manager):
|
216 |
+
archive_path = dl_manager.download(self.config.data_url)
|
217 |
+
annotation_paths = {
|
218 |
+
"train": dl_manager.download_and_extract(self.config.annotation_url + "train_annotations.parquet"),
|
219 |
+
"test": dl_manager.download_and_extract(self.config.annotation_url + "test_annotations.parquet"),
|
220 |
+
}
|
221 |
+
|
222 |
+
return [
|
223 |
+
datasets.SplitGenerator(
|
224 |
+
name=datasets.Split.TRAIN,
|
225 |
+
gen_kwargs={
|
226 |
+
"images": dl_manager.iter_archive(archive_path),
|
227 |
+
"annotation_path": annotation_paths["train"],
|
228 |
+
},
|
229 |
+
),
|
230 |
+
datasets.SplitGenerator(
|
231 |
+
name=datasets.Split.TEST,
|
232 |
+
gen_kwargs={
|
233 |
+
"images": dl_manager.iter_archive(archive_path),
|
234 |
+
"annotation_path": annotation_paths["test"],
|
235 |
+
},
|
236 |
+
),
|
237 |
+
]
|
238 |
+
|
239 |
+
def _generate_examples(self, images, annotation_path):
|
240 |
+
"""Generate examples from Parquet annotations and image archive."""
|
241 |
+
|
242 |
+
# Load annotations from Parquet
|
243 |
+
df = pd.read_parquet(annotation_path)
|
244 |
+
|
245 |
+
# Convert DataFrame into a dictionary for faster lookups
|
246 |
+
annotation_dict = {}
|
247 |
+
for _, row in df.iterrows():
|
248 |
+
img_path = row["file_path"].split("/")[-2] + "/" + row["file_path"].split("/")[-1]
|
249 |
+
if img_path not in annotation_dict:
|
250 |
+
annotation_dict[img_path] = []
|
251 |
+
annotation_dict[img_path].append(
|
252 |
+
{
|
253 |
+
"bbox": row["bbox"],
|
254 |
+
"class_id": row["class_id"],
|
255 |
+
"track_id": row["track_id"],
|
256 |
+
"class_name": row["class_name"],
|
257 |
+
}
|
258 |
+
)
|
259 |
+
|
260 |
+
idx = 0
|
261 |
+
for file_path, file_obj in images:
|
262 |
+
if file_path in annotation_dict:
|
263 |
+
yield idx, {
|
264 |
+
"image": {"path": file_path, "bytes": file_obj.read()},
|
265 |
+
"objects": annotation_dict[file_path],
|
266 |
+
}
|
267 |
+
idx += 1
|