KuAvLab commited on
Commit
f8e43b5
·
verified ·
1 Parent(s): 1f6e19d

Update EMT.py

Browse files
Files changed (1) hide show
  1. EMT.py +61 -23
EMT.py CHANGED
@@ -281,9 +281,50 @@ class EMT(datasets.GeneratorBasedBuilder):
281
  citation=_CITATION,
282
  )
283
 
284
- def _split_generators(self, dl_manager):
285
- """Download (if not cached) and prepare dataset splits."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287
  image_urls = {
288
  "train": _TRAIN_IMAGE_ARCHIVE_URL,
289
  "test": _TEST_IMAGE_ARCHIVE_URL,
@@ -293,32 +334,29 @@ class EMT(datasets.GeneratorBasedBuilder):
293
  "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
294
  "test": _TEST_ANNOTATION_ARCHIVE_URL,
295
  }
296
-
297
- # Ensure paths are correctly resolved for the requested split
298
- extracted_paths = dl_manager.download_and_extract(annotation_urls)
299
- image_archives = dl_manager.download_and_extract(image_urls)
300
-
301
- # Ensure annotation paths point to the correct subdirectory
302
- train_annotation_path = os.path.join(extracted_paths["train"], "EMT", "annotations", "train")
303
- test_annotation_path = os.path.join(extracted_paths["test"], "EMT", "annotations", "test")
304
-
305
-
 
 
 
306
  return [
307
  datasets.SplitGenerator(
308
- name=datasets.Split.TRAIN,
309
  gen_kwargs={
310
- "images": dl_manager.iter_archive(image_archives["train"]),
311
- "annotation_path": train_annotation_path,
312
  },
313
- ),
314
- datasets.SplitGenerator(
315
- name=datasets.Split.TEST,
316
- gen_kwargs={
317
- "images": dl_manager.iter_archive(image_archives["test"]),
318
- "annotation_path": test_annotation_path,
319
- },
320
- ),
321
  ]
 
322
 
323
  def _generate_examples(self, images, annotation_path):
324
  """Generate dataset examples by matching images to their corresponding annotations."""
 
281
  citation=_CITATION,
282
  )
283
 
284
+ # def _split_generators(self, dl_manager):
285
+ # """Download (if not cached) and prepare dataset splits."""
286
+
287
+ # image_urls = {
288
+ # "train": _TRAIN_IMAGE_ARCHIVE_URL,
289
+ # "test": _TEST_IMAGE_ARCHIVE_URL,
290
+ # }
291
+
292
+ # annotation_urls = {
293
+ # "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
294
+ # "test": _TEST_ANNOTATION_ARCHIVE_URL,
295
+ # }
296
+
297
+ # # Ensure paths are correctly resolved for the requested split
298
+ # extracted_paths = dl_manager.download_and_extract(annotation_urls)
299
+ # image_archives = dl_manager.download_and_extract(image_urls)
300
+
301
+ # # Ensure annotation paths point to the correct subdirectory
302
+ # train_annotation_path = os.path.join(extracted_paths["train"], "EMT", "annotations", "train")
303
+ # test_annotation_path = os.path.join(extracted_paths["test"], "EMT", "annotations", "test")
304
+
305
 
306
+ # return [
307
+ # datasets.SplitGenerator(
308
+ # name=datasets.Split.TRAIN,
309
+ # gen_kwargs={
310
+ # "images": dl_manager.iter_archive(image_archives["train"]),
311
+ # "annotation_path": train_annotation_path,
312
+ # },
313
+ # ),
314
+ # datasets.SplitGenerator(
315
+ # name=datasets.Split.TEST,
316
+ # gen_kwargs={
317
+ # "images": dl_manager.iter_archive(image_archives["test"]),
318
+ # "annotation_path": test_annotation_path,
319
+ # },
320
+ # ),
321
+ # ]
322
+ def _split_generators(self, dl_manager):
323
+ """Download (if not cached) and prepare only the requested dataset split."""
324
+
325
+ # Get the requested split
326
+ requested_split = self.config.name
327
+
328
  image_urls = {
329
  "train": _TRAIN_IMAGE_ARCHIVE_URL,
330
  "test": _TEST_IMAGE_ARCHIVE_URL,
 
334
  "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
335
  "test": _TEST_ANNOTATION_ARCHIVE_URL,
336
  }
337
+
338
+ # Validate split name
339
+ if requested_split not in image_urls:
340
+ raise ValueError(f"Invalid split '{requested_split}'. Available splits: 'train', 'test'.")
341
+
342
+ # Extract only the requested split
343
+ extracted_images = dl_manager.download_and_extract({requested_split: image_urls[requested_split]})
344
+ extracted_annotations = dl_manager.download_and_extract({requested_split: annotation_urls[requested_split]})
345
+
346
+ # Define paths based on the requested split
347
+ annotation_path = os.path.join(extracted_annotations[requested_split], "annotations", requested_split)
348
+ image_path = extracted_images[requested_split]
349
+
350
  return [
351
  datasets.SplitGenerator(
352
+ name=datasets.Split.TRAIN if requested_split == "train" else datasets.Split.TEST,
353
  gen_kwargs={
354
+ "image_dir": image_path,
355
+ "annotation_path": annotation_path,
356
  },
357
+ )
 
 
 
 
 
 
 
358
  ]
359
+
360
 
361
  def _generate_examples(self, images, annotation_path):
362
  """Generate dataset examples by matching images to their corresponding annotations."""